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Abstract

Bunte, Kristin; Abt, Steven R. 2001. Sampling surface and subsurface particle-size distributions
in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and
streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins, CO: U.S. Department
of Agriculture, Forest Service, Rocky Mountain Research Station. 428 p.

This document provides guidance for sampling surface and subsurface sediment from
wadable gravel- and cobble-bed streams. After a short introduction to streams types and
classifications in gravel-bed rivers, the document explains the field and laboratory measurement
of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle
parameters, including shape, density, and bulk density are also discussed. The document
describes the spatial variability of bed-material particle sizes as well as the horizontal and
vertical structure of particle deposits. The discussion of sampling procedures and equipment
helps the user to make appropriate selections that support the sampling objective. Sample-size
estimates may be obtained from empirical data or computed from statistical relationships
between sample size and accuracy. The document explains a variety of methods, their usage and
prerequisites. A detailed discussion of sampling schemes guides the user to select appropriate
spatial sampling patterns necessary to produce representative samples.

Keywords: Particle-size analysis, spatial variability of bed-material size, sampling procedures,
sampling equipment, sample size, spatial sampling schemes.
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Preface

The Stream Systems Technology Center of the Rocky Mountain Research Station, U.S.
Forest Service, initiated the generation of this compendium of methods because National
Forest System streams are dominated by gravel caliber material and sound guidelines for
characterizing the bed material of gravel- and cobble-bed streams are needed by hydrologists,
fisheries and aquatic biologists, and geomorphologists. This project was initiated to meet
Forest Service needs and at the same time provide an encyclopedia of approaches as a basis
for the Federal Interagency Sedimentation Project Task Committee to adopt selected
methods as standard approaches in the future. Work on this reference was initiated by an
ad hoc team convened by Larry Schmidt of the Stream Systems Technology Center. The
team included Ron Copeland, U.S.Army Corps of Engineers, Phil Zrymiak, Environment
Canada, Randy Parker, U.S. Geological Survey, and Jim Fogg, Bureau of Land Management.

Streambed analysis and sampling in gravel-bed rivers have received increasing attention,
especially over the last few years. Publishing activity reflects this trend. During the late
1970s and the 1980s, one or two papers were published per year on gravel-bed sampling
procedures, sample size estimates, or sampling schemes. This number has risen to about
five to seven papers per year during the 1990s. Despite the interest in the topic, a
comprehensive compilation of these approaches is lacking and users need a reference to
guide them through the multi-layered aspects of bed-material sampling.

The work presented is intended to fill this gap. Obviously attempting to comprehensively
synthesize a rapidly evolving technology is impossible. This effort represents our
knowledge at this point in time. Consequently, the user must exercise judgment in
applying the approaches provided herein to specific sampling projects. To make the best
choice of methods, the user should have knowledge about gravel-bed rivers and the
processes forming them. The selection of a sampling program (where, how, and how much
to sample) significantly influences the outcome.
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1. Introduction

1.1 Gravel- and cobble-bed streams: distinctions from other streams

Gravel-and cobble-bed streams are principally distinguished from sand- and boul der-bed
streams by their particle-size distributions. Gravel-bed streams have a mean particle size
in the range of 2 - 64 mm, and cobble-bed streamsin the range of 64 - 256 mm (Table
1.1). By contrast, sand-bedded streams contain bed-material that is mostly less than 2
mm, and boulder-bed streams are comprised of mostly boulders and have a mean particle
size larger than 256 mm.

Table 1.1: Stream classification based on the median bed-material particle size.

Stream type Range of median bed-material particle size (mm)
Sand-bed stream 0.063 - 2
Gravel-bed stream 2 - 64
Cobble-bed stream 64 - 256
Boulder-bed stream 256 - 4096

Gravel- and cobble beds usually contain some sand, typically less than 10% in

mountai nous areas, and maximally up to about 50%. In mountain areas, gravel- and
cobble bed streams may also contain large boulders. Thus, the entire range of bed-
material particle size can span five orders of magnitude (i.e., from fine sand of 0.06 mm
to boulders of 4000 mm). This wide range causes complex interactions between particles
of different sizes during erosion, transport, deposition, and causes spatially heterogeneous
beds that complicate bed-material sampling.

Gravel- and cobble-bed streams differ from sand- and boul der-bed streams not only by
particle size, but also with respect to the appearance of the stream (morphology) and the
environment in which the stream occurs (topographic setting). Sand-bed streams often
have low gradients and occur in valleys or on broad plains, whereas most boul der-bed
streams have are steep gradients and are found in mountain environments, although
exceptions exist for both. Gravel-and cobble-bed streams are commonly found in
moderately steep mountain valleys and where streams enter plains near mountains. The
distinction between sand-, gravel -, cobble-, and boulder-bed streamsisincluded in the
stream classification by Rosgen (1994) that is discussed in Section 1.3.2.



1.2 Bed-material sampling and guidelines

1.2.1 Purpose of bed-material sampling

The majority of bed-material sampling work is undertaken in order to obtain information
on the particle-size distribution of the riverbed. Information on bed-material particle size
isneeded for a variety of purposes that can be grouped into three mgjor areas:

1) Streambed monitoring for detecting watershed impacts, analyzing stream habitat, and
eval uating the success of mitigation efforts,

2) Computations of flow hydraulics, bedload transport rates transport capacity and flow
competence to analyze and predict stream behavior, and

3) Advancement in the understanding of stream processes.

Information on particle shape is also needed for predicting bed stability and the onset of
scour by balancing entraining versus resisting forces, as well as for analyzing the source
and travel distance of sediment.

1.2.1 Aspects of bed-material sampling in gravel- and cobble-bed streams

Stream studies quantify bed-material particle size by analyzing the frequency distribution
of particle sizes contained within a bed-material sample. However, sampling bed-
material in gravel- and cobble-bed streamsis different from sampling in sand- and
boulder-bed streams. Sand-bedded streams may be sampled by taking about a cup-full of
sediment from several locations distributed more or less systematically over the
streambed. Differentiation between surface and subsurface sediment is usually not
necessary, and a shovel is often sufficient as a sampling device. Thus sampling bed-
material in sand-bedded streamsis arelatively straight-forward task. Ashmore et al.
(1988) provide detailed guidelines for bed-material sampling in sand-bedded streams.

Sampling bed-material in gravel- and cobble-bed streams is a more complicated
enterprise and forces the user to make a number of informed decisions on the study
methods that depend on the study objective and the stream condition. Prior to sampling,
the user needs to decide where in the stream samples are to be taken. Sampling may
need to cover alarge area of the streambed about 5-7 channel widths long, or
concentrates on a downstream sequence of riffles or pools.

Gravel- and cobble-bed streams usually have surface sediment that is coarser than the
sediment below the surface. The degree of difference between surface and subsurface
sediment istied to the flow regime and upstream sediment supply. The user needs to
identify the appropriate bed-material strata (i.e., layer) to be sampled for a given study
objective. Some objectives require sampling particles exposed to the surface, other
studies sample the armor layer that extends from the surface down to a depth of 1 or 2
large particles. Still other studies sample the subsurface sediment below the surface, or
compare sediment from different layers (strata) within the bed.



Particles on the surface, in the subsurface, and in the armor layer are sampled by different
techniques. For example, particles may be picked off the stream surface (pebble count),
or the subsurface sediment may be dug up after surface particles or the armor layer has
been removed. There are a number of sub-procedures for sampling each strata; surface
particles may be collected along a grid, or all particles within a small areamay be
collected (areal sample, or the streambed surface may be analyzed from photographs.
Equipment and techniques that may be used for sampling subsurface sediment depend on
the sampling objective, the size of the bed material in the stream, and on whether the
streambed is dry or inundated.

Gravel- and cobble-bed streams may have arelatively uniform particle-size distribution
over distances several stream widths long (homogeneous bed). Alternatively, the
streambed may be composed of many areas with different particle-size distributions, or of
areas in which particle-size distributions change from coarse to fine (heterogeneous bed).
It may be difficult to find areas that are both spatially homogeneous and large enough for
collecting a surface sample. In any case, the user needs to select a spatial sampling
strategy (sampling scheme) that matches study objectives and stream conditions. This
requires deciding on the areal extent of the streambed to sample, and the spatial pattern
with which particles are selected. Sampling may extend in some systematic patterns over
the entire area (spatially integrated), or the user may choose to sample in locations
representative for a particular streambed area or sample spatially focused on streambed
areas of concern. Alternatively, the stream reach may be segregated into sub-areas that
are then sampled individually (spatially segregated).

Bed-material sampling should also provide information on the statistical precision of the
sampling result. Ideally, adesired level of precision is selected before the study begins.
Different relations between sample size and precision may be consulted to determine
how large the sample needs to be in terms of particle numbers, of sediment weight, or
how many parallel samples need to be taken. Investigators are frequently surprised by
the large sample sizes necessary. Several hundred particles may have to be collected for
one pebble count, while the mass of volumetric samples needed may be several hundred
kg or more.

The physical act of collecting representative samplesin gravel-and cobble-bed streams
may be challenging. Individual fine particles|ocated between large clasts on the bed may
be difficult to pick up, while cobbles and boulders may be too heavy or too wedged in the
bed surface to dislodge. Cold water makesit difficult to work bare-handed in mountain
streams, and the flow may be fast or deep. The sample mass needed for statistical
accuracy is usualy large, and sampling sites may not have vehicle access.

After al the samples are taken, the final part of bed-material sampling is performing a
particle-size analysis. Thisinvolves sieving the sample aswell as selecting particle-size
parameters and statistical analyses suitable for demonstrating sampling results.



1.2.2 Interdependency between sampling methods and study objectives

Bed-material strata, the sampling procedures and equipment, the sampling scheme, the
sampling precision and ensuing sample size, and the particle-size analysis used in the
study must be thoughtfully selected to provide useful information. For the most part,
their selection depends on study objectives and on the streambed conditions encountered.

There is a dependency between study methods and study aim. A study performed in a
given streambed may yield different resultsif different methodological approaches are
used. Consequently, studies with similar objectives that use different methods generally
fail to produce comparable results. Since results from bed-material sampling projects are
method specific, the user needs to describe the methods used clearly, so that a
comparable study can be done at a different location or time. Similarly, aclear
description of sampling and analysis methods is essential for readers to assess the
meaning and reliability of published results.

1.2.3 Deficiencies in existing guidelines

There is an abundance of literature that demonstrates sampling equipment, compares and
suggests sampling procedures, recommends sampl e sizes, proposes sampling schemes,
presents alternative particle-size parameters or computational methods, and describes
findings of specific bed-material studies. This methodological diversity, and the ongoing
debates on the general appropriateness of methods or their applicability in specific
situations, leave the field person with an abundance of technigues from which to choose.
However, thereislittle guidance for deciding if a particular method is suitable for a given
study and a given stream.

Faced with this diversity, stream studies tend to resort to so-called “ standard methods’.
For exampl e, the 100-particle Wolman (1954) pebble-count is often considered a
standard method for surface particles, or the McNeil and Ahnell (1964) sampler is
commonly used for volumetric bed-material samplesin submerged conditions. These
methods have attained “ standard” status, and are described and applied on numerous
occasions, primarily because they are relatively quick and easy to perform. However,
presumed standard methods, although desirable, are not generally applicable.

Current guidelines on stream studies include the description of a few widely-used
methods but are not a comprehensive source of information on bed-material sampling in
general. Some guidelines focus on specific fluvial environments, such as large alluvial
gravel-bed rivers (Yuzyk and Winkler 1991), or on specific sampling aims, such asthe
evaluation of aguatic habitat (Platts et al. 1883; Hamilton and Bergersen 1984). The
paper by Church et al. (1987) and the guidelines by Ramos (1996) provide perhaps the
widest coverage of bed-material sampling to date.

None of the current guidelines for bed-material sampling and analysis (Platts et al. 1883;
Williams et a. 1988; Edwards and Glysson 1998; 1SO 1992; Y uzyk and Winkler 1991;



Hamilton and Bergersen 1984; Church et al. 1987; Ramos 1996), and few published
papers provide specific information on bed-material sampling in small mountain streams
with coarse beds. Sampling these environmentsis particularly difficult because bed-
material particle sizes extend over a wide range - from sand to boulders. Streambeds are
often perennially inundated, and scour and deposition around large woody debris leads to
aspatially diversified streambed.

1.2.4 What these guidelines are intended to do

These guidelines explain the various aspects of bed-material sampling in gravel- and
cobble-bed streams and discuss the proper application, scope, and limitations of sampling
methods. Thisincludes the explanation of bed-material strata, the procedures and
equipment used for sampling, a discussion of the spatial scheme to be employed, the
relation between sample size and precision, and methods of particle-size analysis. These
guidelines are meant to provide the user with a wide range information from which to
select methods and approaches suitable for a given study in agiven fluvial setting.
Information used to compile these guidelines was mostly found in published papers,
government documents, monographs, and the authors’ field studies.

1.2.5 Guidelines are no substitute for experience

The physical processes acting in mountain streams are quite complex. Stream
morphology and spatial variability of bed-material size are not only affected by fluvial
processes, but also by near-stream and off-stream sedimentary processes. Such complex,
multi-process environments require professional experience for meaningful field work.
Unfortunately, government agencies and consulting companies frequently desire smple
guidelines that advocate methods requiring little field time and that can be followed by
inexperienced field personnel.

For quality results, field work needs to be performed or closely guided by experienced
personnel. An inexperienced crew cannot determine sampling locations and sample size
if these decisions depend on recognizing geomorphic, hydraulic, and sedimentary
processes of various scales and magnitude. Such assessments require knowledge and
familiarity with fluvial processes.

Operator training is extremely important. When selecting particles from a predefined
streambed |ocation, or even when measuring particle sizesin a preselected sample of
rocks, thereisless variability between the results of experienced operators than between
those obtained by novices. Field personnel need to be trained to perform procedures
accurately, to avoid bias, and to use equipment that reduces operator induced error.

No guidelines, these included, can substitute for operator experience and training.



1.3 Classification of gravel- and cobble-bed streams

Gravel-and cobble-bed rivers have different appearances because stream gradients, bed-
material particle-size distributions, large woody debris content, the cross-sectional
channel shape, and stream morphology™ may be different between streams. The diversity
of resulting stream forms makes it useful to classify streams.

Stream classifications are educational in and of themselves. They make the user aware
of different cross-sectional shapes of the stream and the flood plain, of the different
morphological parts of a stream, the specifics of the interactions between flow and
sedimentation, and the resulting stream types. This knowledge leads to an understanding
that stream morphometry?, stream morphology, flow hydraulics and sedimentation
processes respond to controlling agents such as flow regime, quantity and size of
sediment supplied, and channel gradient. Besides an understanding of stream behavior, a
familiarity with the terminology used in stream classifications helps clarify
communication.

From the variety of stream classifications available, two recent stream classification
systems, Montgomery and Buffington (1993, 1997, 1998), and Rosgen (1994, 1996) are
explained below. These two classification systems are currently used most often in the
U.S. Readers are encouraged to become acquainted with them, not only because their
terminology will be used in this document, but also to acquire an understanding for the
variety of stream types and processes common in gravel- and cobble-bed streams.

1.3.1 The Montgomery-Buffington stream classification

Montgomery and Buffington (1993, 1997) devel oped a stream classification to describe
streams found in the Pacific Northwest. The steep mountain ranges and the short
distance to the Pacific coast result in a sequence of predominant landforms: steep valleys
and hillslopes in the upper watersheds, gentler valleysin the middle watersheds, and low
gradient valleys at the end of the watershed. In accordance with those landforms, the
classification system differentiates between five stream types: cascades, step-pool, plane-
bed, pool-riffle, and dune-ripple streams, listed in the order of decreasing stream gradient
(Table 1.2). Those streams have a distinctly different morphology because the
interaction between flow hydraulics and sedimentary processes, particularly the amount
of energy dissipated by the turbulence of flow, differsin each of the stream types.
Although bed-material size generally decreases from cascades to dune-ripple streams, it
is not adiscriminating feature of the classification. Longitudinal and planform
illustrations of the five stream types are shownin Fg. 1.1.

! Morphology characterizes a (fluvial) object through a descriptive term, e.g., a riffle and a pool.

2 Morphometry describes the physical dimensions of a (fluvial) object through measurements, e.g., the width and depth of a
streambed.



Table 1.2: Stream classification by Montgomery and Buffington (after Montgomery and Buffington 1997,

1998)
Stream gradient, Stream Typical bed Dominant Dominant  Typica
range and mode type material sediment sediment pool
(m/m) source storage spacing*
0.03 - 0.20 Cascades Cobble-boulder Fluvial, hillslopes, Around flow <1
(0.08 - 0.20) debris flows obstructions
0.02 - 0.09 Step-pool Cobble-boulder Fluvial, hillsopes, Bedforms 1-4
(0.04 - 0.08) debris flows
<0.02 - 0.05 Plane-bed, Gravel-cobble Fuvial, bank failure, Overbank None
(0.02-0.09) forced pools debris flows
<0.001- 0.03 Pool-riffle Gravel Fluvial, bank failure Overbank, 5-7
(0.01) bedforms
<0.001 Dune-ripple Sand Fuvial, bank failure Overbank, 5-7

bedforms

Values in parentheses are the modes of the observed stream gradient distribution; * in terms of channel widths

1.3.2 The Rosgen stream classification

The Rosgen classification (1994, 1996) uses an alphanumeric code to classify streams
based on five morphometric parameters of the stream channel and its flood plain:

* entrenchment ratio, i.e., ratio of the width of the flood-prone area inundated by flows
having twice the maximum depth of bankfull flow to the width of the bankfull
channel (i.e., ameasure of flood plain width),

» width-depth ratio at bankfull flow,

* Sinuosity, i.e., stream length to valley length,

e dtream gradient, and

* median bed-surface particle size.

The five parameters are used to distinguish seven main stream types identified by capital
letters A to G. Each main stream type has a number assigned that reflects the bed-
material particle size. Streams with boulder-, cobble- and gravel beds have the numbers
2, 3, and 4, respectively and are the only stream types referred to in the context of these
guidelines. Uncapitalized letters a, b and ¢ are used to specify stream gradients outside
the typical range for amain stream type. For example, a stream classified asBc3 isaB-
type stream (B), with a cobble bed (3) but a gradient within the range of 0.001 - 0.02
more typical of C-type streams (c). Morphological characteristics of the mayor stream
typesin the Rosgen classification are presented in Table 1.3. Fg. 1.2 shows the stream
typesin longitudinal, cross-sectional and plan views and provides bed-material sizes and
morphometric criteriafor the 41 delineated stream types.



Fig. 1.1: Schematic longitudinal (left) and planform (right) illustration of the five stream types at low flow:
(A) Cascade with nearly continuous highly turbulent flow around large particles; (B) Step-pool channel
with sequential highly turbulent flow over steps and more tranquil flows through intervening pools; (C)
Plane-bed channel with an isolated boulder protruding through otherwise uniform flow; (D) Pool-riffle
channel with exposed bars, highly turbulent flow over riffles, and more tranquil flow through pools; and (E)
Dune-ripple channel with dune-ripple bedforms. (Slightly altered and reprinted from Montgomery and
Buffington (1997), by permission of the Geological Society of America).



Table 1.3: Morphological characteristics of the major Rosgen stream types

Stream  Morphological characteristics
Type

A Step-pooal, or cascading: plunge and scour pools, high energy, low sediment storage, stable;
B Rifflesand rapids: some scour pools, barsrare, stable;

C Pool-riffle sequences. meandering, point bars, well developed floodplain, banks stable or unstable;
D Braided: multiple channels, shifting bars, scour, deposition, high sediment supply, eroding banks;
DA Anastomosing: multiple channels, pool-riffle, vegetated floodplain, adjcnt. wetlands, stable banks;
E Meadow meanders: well-developed floodplain, riffle-pool, relative high sediment conveyance;

Valley meanders:. incised into valleys, poor floodplain, pool-riffle, banks stable or unstable;
G Gullies: incised into hillslopes and meadows, high sediment supply, unstable banks, step-pool.

1.3.3 Differences between the Rosgen and the Montgomery-Buffington
classifications

The Rosgen and the Montgomery—Buffington stream classifications differ in several
points which include:

Basisfor classification

The Rosgen classification is based on morphometric parameters and precisely
differentiates between streams of different slope gradients, width-depth ratios, sinuosity,
and entrenchment. The Montgomery—Buffington classification is based on stream types
commonly found in the Pacific Northwest where streams traverse the relatively short
distance between steep headwaters and sea level in a succession of different stream types.
From steep terrain to low gradient, these stream types have an increasing potential to
show a morphological response to changes in water and sediment yield.

Appearance of the classification system

The Rosgen classification presents a non-intuitive al phanumeric code. The large number
of stream types thus classified can be discouraging for the novice user. The
Montgomery—Buffington classification presents five stream types using commonly
known fluvial terminology.

Applicability

Based on morphometric parameters, the Rosgen classification system is applicable to any
streambed, thus exceeding the range of streams addressed in thismanual. The
Montgomery—Buffington classification is best suited to describe gravel-, cobble-, and
boulder-bed streams in mountainous terrain, from steep headwaters to low gradient
valleys and plains, and thus describes the stream types addressed in these guidelines.
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Correspondence between the two classification systems

The three stream types step-pool, plane-bed, and pool-riffle, distinguished by the
Montgomery-Buffington classification generally correspond to the stream types A, B, and
C in the Rosgen classification. The mode of slope gradients observed for these three
stream types in the Montgomery-Buffington classification corresponds fairly well to the
slope gradients assigned to A, B, and C streams by Rosgen (Fig. 1.3). The Montgomery-
Buffington classification provides a wide range of observed slopes, which may overlap
between stream types, thus uniting streams with morphometric differencesinto one
stream type if the hydraulic and sedimentary processes are similar. The Rosgen
classification creates numerous subgroups, thus differentiating between stream types with
dlight morphometric differences.

Dune-ripple
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‘ Pool-riffle
n
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5 Bc | B | Ba |
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Fig. 1.3: Comparison of stream gradients in the Montgomery-Buffington (1997,1998), and the Rosgen
(1994, 1996) classification. The Montgomery-Buffington stream types are pool-riffle, plane-bed, step-pooal,
and cascades. The light shading indicates the range of observed stream gradients, the dark shading indicates
the mode. The lettersrefer to the Rosgen classification. Light shading indicates the main stream type,
wheresas subtypes with steeper or gentler stream gradients have no shading. Open-ended boxes indicate
stream gradients given in terms of "larger than", or "smaller than".
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1.3.4 Sediment source: self-formed versus relict/non-fluvial streams

The distinction between self-formed and relict/non-fluvial gravel-bed riversis not
explicitly part of current classification systems, but this distinction is important because
it affects al aspects of bed-material sampling in gravel-bed rivers.

Self-formed streams

Self-formed streams receive their sediment supply amost entirely from upstream
(fluvial) sources, the local bed, and erosion of banks composed of sediment transported
under the current transport regime. Stream morphology and sediment sizes are
exclusively controlled by the interaction between flow and sediment. Consequently, the
streambed contains no particles larger than those that can be moved during the highest
floods. Because sediment in self-formed streamsis not coupled to hillslopes and other
non-fluvial sources, such stream systems are also referred to as uncoupled streams.

Relict/non-fluvial streams

Relict/non-fluvial streams can receive much of their sediment from non-fluvial sources

such as:

* mass movements (debris flows, landslides, avalanches, etc.),

* rock-fall from canyon walls,

* intensive dope wasting, bank undercutting and slumping,

» downcutting into glacial deposits from which the stream unearths large boulders that
may be of commonly untransportable size, and

» erosion of bank material deposited under a different regime of flow or sediment

supply.

Streams receiving sediment supply from relict-fluvial and non-fluvial sources are often
referred to as coupled. Coupled streams are common in mountain areas, where nearby
hillslopes and glacial deposits contribute to the off-stream sediment supply. The
presence of large cobbles and boulders may cause unsystematic spatial variability of bed-
material size. Obstaclesin the stream flow create local hydraulics that control
sedimentation patterns and inhibit the devel opment of a stream morphology expected for
a stream with a given gradient, stream flow, and supply of transportable sediment.

Self-formed and relict-non-fluvial streams can be difficult to distinguish in thefield, if
off-stream sediment supply islow or occurs only sporadically. Whiting and Bradley
(1993) defined the likelihood of debris flows reaching the stream for regions prone to
debris flows based on the ratio of valley width to stream width. For example, debris
flows seldom reach a small stream 5 m wide if the valley is more than 250 m wide, but
occasionally in avalley 50-250 m wide. Most debris flows would enter the stream if the
valley was 25-50 m wide, and all debris flows enter the stream if stream width is equal to
valley width. An aspect not considered in this definition is that streams often take a
winding course through the valley, being close to the valley wall and even undercutting
the hillslopes at some locations. Here, streams can easily receive off-stream sediment,
even in wide valleys.
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1.3.5 Wadable and non-wadable streams

These guidelines applies to gravel- and cobble-bed streams that are generally wadable.
Nevertheless, most of the techniques discussed in this document could also be applied to
deeper streams if ateam of experienced divers were available. Some sampling
techniques and equipment may have to be adjusted to fit underwater conditions.

Wadable streams are easier to sample when less water isin the channel. In some
streams, the annual low flow exposes only a small proportion of the bed, so that wading
and sampling techniques that work in submerged conditions are required year-round. In
other streams, much of the bed is exposed during low flows, which makes those times
preferable for many sampling studies.

Within the range of wadable flows, fast flowing water often causes more sampling
difficulties than deep water. Not only isthere a safety hazard when venturing into fast
flow with velocities exceeding 1.5 m/s (Abt et a. 1989), but sampling results are likely to
become inaccurate and biased in fast water. Fine particles can easily be washed from an
operator’s hand, and fast flow, often combined with turbid water, does not allow the
operator to visually distinguish individual particles on the channel bottom. Thisrequires
that much of the work be performed by feel. Fast flow adds to the difficulty of extracting
large or wedged particles from the bed.

Sampling in locally deep flow hasits challenges as well because it makes some stream
locations inaccessible to wading or an operator may not be able to touch the stream
bottom by hand without getting his face wet. However, problems posed by deep water
can often be mitigated, for example by visually estimating the size class of a particle to
be included in the sample, or by sampling with long-handled scoops while using a
flotation device. Relatively warm water may encourage getting wet in swimming clothes,
but submersion or diving in cold water requires dry suit equipment.
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2. Particle analysis

Particle analysisin gravel-bed riversincludes the analysis of particle size, particle shape,
particle density and bulk density. These four topics are presented and discussed below.

2.1 Size analysis

Particle-size analysis comprises the measurement and analysis of the three particle axes
that define the three-dimensional shape of a particle. For many applications, it is much
more convenient to characterize particle size by only one variable, such as the length of
the intermediate particle axes or the size of the sieve on which a particle was retained.
Once the sizes of particles are determined, they are statistically analyzed, so that particle-
size distributions and statistical parameters characterizing them can be compared
between streams or over time. The mean particle size on a streambed, a particular
particle-size percentile, a characteristic large particle size, aswell as the entire spectrum
of particle sizes all affect the hydraulics of flow aswell as bedload transport rates.
Studies concerned with the mechanics of particle entrainment, particle transport and
deposition need to include the description and comparison of particle shapes.

2.1.1 Particle axes

The analyses of particle sizes and particle shape parameters are based on the length of
three mutually perpendicular particle axes: the longest (a-axis), the intermediate (b-axis),
and the shortest (c-axis) axis. The demand for the a, b, and c-axes being truly the
longest, the intermediate, and the shortest axes agrees with the demand for
perpendicularity of the three particle axesonly if the particle shape is ellipsoidal (e.g.,
like alightly-worn bar of soap). Particleswith arhombic shape cannot fulfill both
demands, and this might leave the user confused on whether to base particle
identification on the absolute lengths of particle axes or on perpendicularity. The
identification of the a- and the b-axesis affected most by this discrepancy, whereas the
position and length of the c-axisis usually clear.

The crucial point iswhether the analysis starts with the definition of the a-axis asthe
longest axis, with the b-axis following as the longest intermediate axis perpendicular to
the a-axis as done in the Canadian guidelines (Y uzyk and Winkler 1991) (Fig. 2.1), or
whether the analysis starts with identifying the b-axis as the “ shortest axis of the
maximum projection plane (the plane with the largest area) perpendicular to the c-axis’
(Gordon et al. 1992. 198-199). If the a-axisis subsequently defined as perpendicular to
the b-axis, then the a-axisis not necessarily the longest distance between two points on a
given particle. The b- and a-axes are along the heavy black arrowsaand bin Fg. 2.1
according to the definition by Gordon et al. (1992).
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Differencesin the definition of the a- and b-axis are most pronounced in particles of
rhombic shape (Fig. 2.2, left). a- and b-axes follow the gray stippled lines a and b when
defined according to Y uzyk and Winkler (1991), and along the black solid linesa and b
according to the definition by Gordon et al. (1992). Both lines a and b are longer than a
and b.

a
L\ .

Fig. 2.1: Definition of particle axes (Redrawn after Yuzyk 1986, and Y uzyk and Winkler 1991).

x14

Fig. 2.2: Discrepancy in b- and a-axes definitions for rhombic, irregular ellipsoidal, and ellipsoidal particle
shapes.
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The differencesin the two axis definitions become irrelevant for smooth ellipsoidal
shapes (Fig. 2.2). Consequently, the definition of particle b-axes should be
unproblematic for well rounded and ellipsoidal particlesin aluvia streamsin which all
particles experienced along fluvial transport. However, particle-axes measurements can
be difficult in mountain streams with a non-fluvial sediment supply, or in headwaters
where fluvial transport is short and the particles can be angular and rhomboidal.

Ultimately, the study aim needs to decide how particle axes are measured. |f hand-
measured b-axis lengths are to be compared with sieve sizes, b-axis measurement should
stimulate the way a particle drops through a sieve opening. Measurements of a- and c-
axisthen follow the rules of perpendicularity. Measurements of b-axis lengths
automatically follow this procedure if templates are used. The b-axis measurements
performed with rulers, calipers, and the pebble box on rhomboid particles (Section 2.1.3)
are prone to orient the b-axis perpendicular to the longest (a-axis), which isleast
problematic to identify. Such b-axis measurements tend to produce longer b-axis lengths
than template measurements.

2.1.2 Particle sizes and size classes

The size of a particle can be determined in three different categories: the actual b-axis
length, the nominal diameter, and the particle-sieve diameter. The three approaches are
used for different purposes.

Actual b-axislength

Measuring the actual lengths of particle b-axesin units of mm or cm may be important
for studies that are concerned with a small range of particle sizes, arange smaller than
distinguished by two consecutive sieves in a standard sieve set. An example for such a
study is the determination of the dominant particle size. Thisis computed asthe
arithmetic mean of particle b-axes measured on about 30 large, but not the very largest,
particles found within a deposit.

Nominal diameter

If the mass or volume of a particle is of more importance for a study than the particle b-
axislength or the sieve diameter, the nominal diameter isused. The nominal diameter is
athree-dimensional approach and describes particle size by its smallest characteristic
diameter. The nominal diameter denotes the diameter a particle would assumeif its
volume was expressed as a sphere and is computed from:

D,=(@- b- o (2.1)

D, isdirectly related to particlevolumeVD:g(a- b- ¢
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Particle sieve-diameter

Particles contained in a sediment deposit are commonly analyzed by grouping particles of
various sizes into particle size-classes that correspond to the size of sieve openings. The
particle sieve-size can be defined as the smallest sieve size through which a particle can
pass (Dpass) Or asthe largest sieve size through which the particle did not pass, the
retaining sieve size (D,¢). For agiven particle, passing or retaining sieve size differs by
one size class, thus, it isimportant to indicate whether reference is made to the passing or
retaining sieve size. Particle sieve-diameter also depends on whether sieves with square
or round-holes were used; whereas for particles of equal weight, sieve diameter varies
with particle shape (Sections 2.1.3.1, 2.1.3.4, and 2.1.3.5).

Sieve diameter and nominal diameter are identical for spheres and ellipsoidal particles
with certain axesratios such asa = 3/2 b, and c=2/3 b, but deviate for other particle
shapes. Compared to a sphere with an identical b-axis, adisc hasasmaller D, dueto its
small c-axis, whereas the D,, of arod-shaped particle exceeds that of a sphere because of
itslong a-axis. Acknowledgment of this discrepancy can become important because
sedimentation, i.e., erosion, transport, and deposition of particles, istied to particle weight
and shape (particularly the area projected towards the direction of flow). The analysis of
particle shape is discussed in Section 2.2.

2.1.2.1 The Wentworth scale of particle sizes

If particle size-classes progressin alinear scale, e.g., 10, 20, 30 mm, the frequency of
particles per size classin fluvial gravel tendsto be approximately logarithmically
distributed. Logarithmic distributions are statistically more difficult to work with than
normal distributions. In order to obtain an approximately normal distribution of particle
sizes, particle-size classes were made to increase by afactor of 2 (Wentworth scale).

Thus, particle sizesin units of mm double in consecutively larger size classes (2 -4 mm, 4
-8 mm, 8- 16 mm, 16 - 32 mm, etc.). These size classes are grouped into six major
particle-size categories - boulders, cobbles, gravel, sand, silt and clay (Table 2.1). Silt
and clay content are rarely analyzed in studies of gravel-bed rivers, thus, these size
categories are included only in an abbreviated form in Table 2.1.

The mass of a spherical particle increases by a factor of 8, when the particle diameter
doubles. This8-fold range of particle mass per size classis quite large, and many studies
therefore carry out particle-size analysesin size classes half as large as the Wentworth
classes (see sieve sizesin Section 2.1.3).

2.1.2.2 Particle size in @-units

The frequency distribution of the weight or number of particles per size class tends to
follow approximately alognormal distribution (Section 2.1.4.3) when particle sizes are
expressed metrically in mm. Consequently, the arithmetic mean particle size and the
arithmetic median particle size are not the same (mean is usually larger than median). If a
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Table 2.1: Size gradation for sediment in the range of sand to boulders (Wentworth scale)

Description of particle size ¢=-log, mm y=log,
(T
([ - -12.0 @ 4096 [ 12.0
very large -115 2896 115
([ - -11.0 @ 2048 @ 11.0
large - 105 1448 105
Boulder [ - -10.0 M@ 1024 @ 10.0
Medium -95 724 9.5
[ - -9.0 M 512 @ 9.0
small -85 362 85
oooDooooooooooon -80 OO 256 M 8.0
large -75 181 7.5
Cobble [ - -7.0 0 128 M@ 7.0
Small -6.5 90.5 6.5
oooDoooOoooooooo -60 OO 64 [ 6.0
very coarse -55 453 55
[ - -50 0 32 M 5.0
coarse -45 22.6 4.5
([ — Pebble -40 @ 16 @ 40
Gravel medium -35 113 35
[ - -3.0 8 M 30
fine -25 5.66 25
([T -20 M@ 4 @ 20
very fine Granule -15 2.83 15
oooDoooOoooooooo -10 OO 2 @ 1.0
very coarse -0.5 141 0.5
[ - 0 m 1 0
coarse +0.5 0.707 -05
([ - +1.0 @ 0500 O -10
Sand medium +15 0.354 -15
[ - +2.0 0250 O -20
fine +25 0.177 -15
[ - +3.0 @ 0125 - -3.0
very fine +35 0.088 -35
ooooooooooooooo +40D00 0.063 — -4.0
Silt
ooooooodooooooo +8000 00039 - -80
Clay
D0o000o0dodooooonoo +120 00 0.00024 - -12.0

particle-size distribution was truly logarithmic, log transformation of particle-size units
would produce a normal distribution. It isdesirable to work with normal distributions,
because standard statistical procedures can be used to analyze them.

Any kind of logarithmic transformation, e.g., the ssimple log of the particle size D, i.e., log
(D), applied to the original datawill produce anormal distribution. However, in order to
obtain convenient, integer values after alog transformation, sedimentol ogists and
geomorphologists (Krumbein 1934) expressed particle size D as the negative logarithm to
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the base of 2 and called the result the gscale. ¢, spelled out as phi, isthe Greek letter for
f. Particle sizesin ¢@units are computed from particle sizes D in units of mm by

@ = -logy(D) (2.2)

Since the negative logarithm to the base of 2 is not routinely programmed in scientific
calculatorsit needsto be computed from

_ |Og(D|)

~ " log(2) (2.3)

Since log(2) = 0.3010, this expression can be smplified to

Q= '%93{(%2 =-3.3219 log(D)) (2.4)

For example, -3.3219 log(64) = -3.3219 - 1.8062 = 6.0. Conversely, particlesizesD in
units of mm are obtained from particle sizesin @-units by

Di - 2‘@ (25)

This expression can easily be solved by scientific calculators or spreadsheet programs.
An alternative expression dating from the time of logarithmic and exponential tablesis

D; = g% = 109109@ = 103014 (2.6)

Table 2.1 presents particle sizesin units of mm and ¢.

2.1.2.3 Particle size in grunits

The @transformation produces positive values for particle sizes smaller than 1 mm and
negative values for particle sizeslarger than 1 mm. Thisfeature is convenient for studies
that focus on sand and smaller sediment. However, this feature isinconvenient for studies
in gravel-bed rivers, because having smaller, negative numbers for larger particle sizesis
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counterintuitive. Consequently, the yr~scale was developed (Greek letter y spelled out as
psi) which producesincreasingly larger values as particle sizes increase from sand to
boulders. -units are the negative values obtained in gunits (¢ = -¢@, or @=-). Y-units
are computed from particle size D in units of mm by

i =109, (D)) (2.7)

By analogy to Eq. 2.2, this expression is solved by

_ |09(D|)

%= 1og (2) (2:8)

which can be smplified to ¢4 = 3.3219 log (D;). For example, 3.3219 log(64) = 3.3219 -
1.8062 = 6.0. Particle sizesin (-unitsare provided in Table 2.1. Particle size D in mm-
unitsis obtained from particle sizesin (-units by

Di=2Y=¢""®=10%'%9® (2.9)

2.1.3 Sieving and manual measurements of particle size

The size of gravel particles can be measured manually or by sieving. The different
equipment used in both approaches can affect the results. This makesit necessary to
compare different methods of particle-size measurements and to determine conversion
factors.

Sieving usually employs square-hole sieves, although some labs still have round-hole
sieves. Square- and round-hole sieves produce different size gradation curves, especially
for flat particles. Manual particle-size measurements traditionally use rulers and calipers.
These devices are prone to operator error that can be avoided by using templates (Section
2.1.3.6). Notwithstanding operator error, ruler and template measurements differ to the
same degree as do size gradations based on round-hole and square-hole sieves. Pebble
boxes are a handy device if all three particle axes are to be measured (Section 2.1.3.8)
because they help to reduce operator error and speed up the measurements.

2.1.3.1 Square-hole sieves

Square-hole mesh wire sieves are the standard |aboratory sieves for sand and gravel.
They have size gradations between 0.063 and 64 mm. Sieve sizes, i.e., the side length of
the mesh width Dy, typically advance as alogarithmic seriesbased on 2, i.e.,
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Ds = 2¥ (2.10)

where x usually assumes values in increments of 0.5, so that Ds advancesin 0.5 units of ¢
or Y (Table 2.1). For sediment from gravel-bed rivers, a stack of sievesin 0.5 gunits
usually has 64 mm as the coarsest sieve, and consecutive smaller sieves have mesh widths
of 45.3, 32, 22.6, 16, 11.3, 8, 5.66, 4, 2.83, and 2 mm. If the sand fraction is of concern,
Sieve sizes continue with 1.4, 1.0, 0.71, 0.5, 0.35, 0.25, 0.18, 0.125, 0.088, and 0.063 mm.
Sievestypically used in the United States produced by the American Society for Testing
and Materials (ASTM E-11) follow the 0.5 @or (-gradation only approximately for
particle sizesin the gravel range. This deviation stems from expressing particle-size
classes as fractions of an inch. Sievesthat retain particles larger than 22.6 and 11.3 mm
are commonly labeled 22.4 and 11.2 mm, suggesting an arithmetic mean between -4.5 ¢
(=22.6 mm) and 7/8 inch (= 22.2 mm). Likewise, the 11.2 mm Sieve size isthe mean
between -3.5 ¢(=11.3 mm) and 7/16 inch = 11.1 mm. Sometimes, ASTM E-11 sieves
indicate three different mm sizes for the same sieve size. The“45 mm” (1%4inch) sieve,
for example, sometimes indicates 44.45 mm, the mm equivalent of 1%2inch, sometimes
45.3 mm, the exact mm equivalent of -5.5 ¢ and sometimes 45 mm, which isan
intermediate value between the two. This discrepancy is problematic if size classes are
first expressed in mm, and then mathematically converted to gor (- unitsfor further
particle-size analysis.

Sieving in 0.5 @-unitsis recommended for many sampling projectsin gravel-bed rivers.

However, some study objectives may require sieving in 0.25 g-increments, while for
others units of 1.0 gmay be sufficient.

2.1.3.2 Relation between b-axis size and square-hole sieve sizes

Particles found within one 0.5 g sieve class can have b-axes lengths that range over a
factor of aimost 2. The smallest b-axis length of a particle retained on a-4.5 ¢=22.6 mm
seveis22.7 mm, the largest b-axis length is45.2 mm. For agiven particle shape, the
range of b-axes lengths iS\/_Z [11.41. Perfect spheres have the smallest b-axes. The
smallest sphere retained on the 22.6-mm sieve has a b-axis of 22.7 mm, whereas the
largest sphere to fit through the -5 ¢= 32-mm sieve has a b-axis of 31.9 mm. Extremely
flat particles have the largest b-axes, ranging from 31.9 to 45.2. Thus, the flatter the
particle, the larger the b-axis that fits through a square sieve opening (Fig. 2.3). Particle
flatness can be expressed by the ratio of shortest to intermediate axis ¢/b. The relation
between the ratio of a square-hole sieve opening D to b-axis size and particle flatness
(i.e., theratio of c/b) isgiven by Eq. 2.11 and shown in Fig. 2.4. Fg. 2.4 can likewise be
used to illustrate the ratio

2 g

(2.12)
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D¢/b=1 b c/b=1, sphere or elongated particle
D./b=0.8 b . ¢/b=0.6, ellipsoid or bladed particle
DJb=0. .~~~ b -~ c/b=0.2, discor platy

spHere

Fig. 2.3: Illustration of effect of particle shape on largest b-axis size to fit through a square-hole sieve
(Redrawn from Church et a. 1987; by permission of John Wiley and Sons, Ltd.).
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Flathess <———— increasing — > Sphericity

Fig. 2.4: Ratio of square-hole sieve opening Ds to measured b-axis size as a function of particle flatness, i.e.,
the ratio of ¢/b (Redrawn from Church et al. 1987; by permission of John Wiley and Sons, Ltd.).
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of square-hole sieve size to round-hole sieve size for various degrees of particle flathess
(Section 2.1.3.5).

2.1.3.3 Round-hole sieves

Some sieves consist of metal plates with round borings of the diameter Ds. Since square-
hole sieves and round-hol e sieves have openings of different shapes, both sieves produce
different sieve results, except for particles with perfect spherical shapes. A spherewith a
diameter of 3.99 mm fits through both a round-hole and a square-hole sieve of 4 mm, and
aball 46 mm in diameter islikewise retained on both the square and the round-hole sieve
of 45 mm. However, sieving ellipsoidal or flat particles with both sieve types produces
different gradation curves (i.e., cumulative frequencies). Differencesin mean particle b-
axes length and conversion factors between round and square-hole sieve results are
discussed in Sections 2.1.3.4 and 2.1.3.5.

2.1.3.4 Center of class and mean particle b-axes length per size class

Sometimes, computations require that an entire particle-size classis represented by a
single particle-size value. Commonly, thisvalue istaken asthe “ center of class’, D,
which isthe hypothetical sieve size between the retaining and the passing sieve size. D is
therefore determined from the logarithmic mean between the retaining sieve size D, and
the next larger, passing sieve size Dpass Which is equal to the diagonal of the retaining
sevesize.

@ !Dret! + |% !DEQ$!|:|
D.=10"g > 0 (212)

For example, center of class for the 16 mm sieve is D = 10 (®16*1°9220/2 = 19 02 mm. In
terms of @-units, the center of classis the arithmetic mean between the retaining and the
passing sievesize. Thus, @ for the-4to-4.5 gpsizeclassis (-4 +-4.5)/2 = 4.25 ¢= 19.03
mm. Eq. 2.12 can likewise be expressed by the best-fit regression between D, and D, ¢,
which yields the linear function

D, = -0.00284 + 0.841 D, & (2.13)

The center of class D, (the central sieve size between the retaining and the passing sieve)
isonly equal to the particle size of the weight midpoint D, of the sediment between the
retaining and the passing sieves if a sufficiently fine gradation of sieve sizesis chosen
(Folk 1966). In order to avoid an imbalance between D and Dy, fluvial gravel ranging
from sand to cobbles should rather be sieved in increments of 0.5 gthan in increments of
10¢@
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Mean particle b-axeslength per size class

The center of class D, is not generally equal to the (geometric) mean particle b-axis
length by, within that size class and thus can usually not be used as a substitute for by, D.
and b, are only identical for perfect spheres. D for the size class 16 to 22.6 mm is 19.02
mm. The range of spheresretained on the 16-mm sieve extends from 16.1 to 22.5 mm
with a geometric mean of 19.03 mm.

The b-axes sizes of very flat particles retained on a given sieve are afactor of up to \/_2 0
1.4 larger than the b-axes of spheres, extending from 31.9 to 22.5 mm, with a geometric
mean of 26.8 mm. Thus, for a sediment mixture of spheres and very flat particles, the
geometric mean b-axis length of particles retained on the 16-mm sieve would be
somewhere within the range of 19 and 26 mm.

Uneven distribution of particle sizes per sieve class

Fuvial gravel particles are usually not of equal particle shape, particularly not in

mountai nous areas where bed material comprises a variety of particle shapes due to
highly variable transport distances of particles within areach. This variety of shapes
produces an uneven, and approximately normal, distribution of particle b-axes lengths
within one sieve class. Small particles are scarce on a sieve because small particles are
only retained if they are spherical, while flat particles of the same b-axis length are not
retained. Large particles are scarce on a sieve because only those large particles that are
flat are passed through the next larger sieve, while round particles of the same b-axis size
are retained on that larger sieve. The mid-size range of particles per sieve class comprises
all particle shapes, thus mid-sized particles make up the mgjority of particles per sieve
class. Using round-hole sieves, the passing sieve retains all particles with a b-axis larger
than the passing sieve size (instead of letting the flat ones through). Thus, the majority of
particles retained on around-hole sieve are close to the passing sieve size when sieving
sediment of mixed particle shapes.

2.1.3.5 Comparison of sieve results using round-hole and square-hole sieves

Sieving agiven particle mixture with a set of square-hole sieves produces afiner size
distribution than would be obtained from sieving the same particle mixture with round-
hole sieves. Thisis because around-hole sieve may retain particles that are not retained
on asquare-hole sieve of the same size. For example, an ellipsoidal particle with a b-axis
of 50 mm and a c-axis of 30 mm will not pass through a 45-mm round-hole sieve, but will
pass through a 45-mm square-hole sieve. Thus, this 50-mm particle will betallied as
larger than 45 mm when using round-hol e sieves, and as smaller than 45 mm when using
sguare-hole sieves.

If all particles of the sample are of the same and known shape, results from round-hole
and square-hole sieving are convertible. Conversion factors between round-hole and
sguare-hole sieves range from 0.71 for extremely flat particlesto 1.0 for spheres (Church
et al. 1987) and Fg. 2.4 can be used for conversion between round and square-hole sieve
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results. Huvially transported particles in wadable gravel-bed streams are most likely to be
approximately ellipsoidal in shape and therefore are likely to have a conversion factor
between 0.8 and 0.9. Note that particle shapes may vary between different size classes or
different lithologies. Thus, different conversion factors may have to be applied within
one sample to account for thisfact.

2.1.3.6 Templates

During field studies, gravel particle sizes are best determined with templ ates because
template measurements provide higher accuracy than measurements with rulers and using
templates reduces variability between different operators. A template, also called a
gravelometer, isathin auminum or plastic plate with several sieve-sized square-holes.
The holes usually correspond to the sizes of standard 0.5 @increment sieve sets, starting
at 2 mm, and reaching to 128 or 180 mm, depending on the size of the template.
Templates can also be designed with holesin 1, or 0.25 gincrements (Fig. 2.5). A
gravelometer made of plastic, about 25 by 30 cm in size, and 0.5 cm thick, can be
purchased from Hydro Scientific in Great Britain (Fig. 2.6). U.S. Government agencies
can purchase templates from the Federal Interagency Sedimentation Project (FISP) in
Vicksburg, Mississippi. The FISP gravelometer US SAH-97 is made of aluminum, is
0.32 cm thick, and has 14 square-holesin 0.5 @-units ranging from -1 to -7.5 ¢ (2 to 180
mm). The overall dimensions are 28 by 34 cm (Fig. 2.7).

Templates are especially useful for pebble counts (Section 4.1.1. and 4.1.2). The operator
picks up a particle and pushes the particle through various holes. The aim isto determine
aparticle’ ssieve diameter either in terms of “not passing or larger than” the hole of a
given size, or in terms of “passing or smaller than” the hole of agiven size. The “larger
than” approach records the largest hole size (i.e., sieve size D) that is smaller than the
particle diameter (equivalent to the sieve size on which the particle was retained).

Particle sizeistallied as“larger than D" where D isthe next smaller hole size. The
“smaller than” approach records the smallest hole size through which the particle could
be passed (equivalent to sieve size through which the particle could pass), and tallies the
particle as“smaller than Ds”, where Dy is the next larger hole size. For example, arock
with a 60 mm b-axis would be tallied in the larger than 45 mm class using the “larger
than” approach, or as smaller than 64 mm in the “smaller than” approach. It does not
matter which approach is followed, aslong as one approach is followed consistently. The
“larger than” approach seems to be more intuitively connected to note taking when
sieving, equivalent to recording the weight of particles “retained on the sieve” with the
sevesize Ds. The“smaller than” approach, equivalent to recording the weight of
particles“passing asieve” eliminates one step in the computation of cumulative
frequency distribution, which is customarily computed as “percent of particles finer than”
or “percent passing”, but seemsto be lessintuitive.

Y For further information contact FISP at (601) 634-2721.
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Fig. 2.5: Template in 0.25 ¢-units used by Hey and Thorne (1983); Reproduced by permission of the
American Society of Civil Engineers.

Fig. 2.6: Template available from Hydro Scientific Limited, Stratford-on-Avon, Warwickshire CV 37 8EN,
UK, Fax/phone:+44-1789-750965, email: HydroSci @aol.com; website: http://members.aol.com/HydroSci.
Photo courtesy of Hydro Scientific.
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Fig. 2.7: Template US SAH-97, produced by the Federal Interagency Sedimentation Project, website:
http://fisp.wes.army.mil/.

Measuring particle sizes with templatesis expedient because the appropriate “larger than”
or “smaller than” hole size can usually be determined on the first or second try.
Templates are also useful for field sieving individual bulk samples. Template
measurements are preferable to ruler and caliper measurements for particle-size analyses
because potential errors arising from improperly defining the b-axis (Section 2.1.1), or
from misreading the ruler can be avoided (Hey and Thorne 1983; Stream Notes, April
1996). The magnitude of errors avoided by template measurements becomes apparent if
replicate b-axes measurements with rulers are performed on re-measured rocks. The
same operator can usually reproduce particle b-axis measurements correctly. However,
when multiple operators re-measure pre-measured particles using aruler, individual
operators produce different results (Wohl et al. 1996). Differences between operators
results are more pronounced when angular particles shapes, and particle structures due to
layering or metamorphic processes make the correct identification of the b-axis difficult
(Marcuset a. 1995). The use of templates largely eliminates these measurement errors.

2.1.3.7 Rulers and calipers

Some field studies measure the particle b-axis size with aruler. This procedureisonly
recommended if the study focuses on measuring particle sizes within afairly narrow
range. An example isthe determination of the dominant large particle size from among
perhaps 30 large, but not the largest, particles within a given sampling area.
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Measuring the particle b-axes size with aruler or caliper is not recommended in studies
that tally b-axes measurementsin @units. First, ruler measurements are prone to error
because the operator has to accurately determine the orientation of the b-axis (Marcus et
a. 1995). Secondly, ruler measurements do not correspond to measurements made with
templates, or square-hole sieves. Ruler measurements correspond to measurements with
round-hole sieves. Thus, when comparing or merging ruler with template measurements,
the same procedures as discussed in Section 2.1.3.5 apply, and particle sizes need to be
converted, using for example Fig. 2.4. Finally, no additional information on particle size
is gained from measuring b-axesto the nearest mm with aruler or calipers, if these
measurements are then tallied in 0.5-¢si ze classes.

Tallying particle sizesin gunits assumes that particle sizes are normally distributed in
termsof gunits. This assumption does often not hold in a strict statistical sense for
particle-size distributions from gravel beds. Nevertheless, anormal distribution is often
assumed for convenience, so that standard statistical procedures can be used (Section
2.1.4.3). However, if the assumption of a normal distribution cannot be accepted,
measuring particle b-axes lengths to the nearest mm or cm allows for more optionsin the
statistical analysis.

Rulers, or better, calipers, are appropriate for analyses of particle shapein the lab when
particle axes are measured by a person aware of the difficultiesinvolved in proper
identification of the three particle axes. If large quantities of pebbles need to be
measured, a pebble-box (Section 2.1.3.8) may be needed.

2.1.3.8 Pebble-box

The pebble-box was devel oped by Ibbeken and Denzer (1988) who conducted several
large studies of gravel particle shapes. The pebble-box isa convenient device for easy
measurements of the three particle axes because it does not require repositioning the
particles between measurements, as ruler measurements do, and ensures all three
measured particle axes are at right angles. A pebble-box can be constructed of two 3-
sided corner pieces each formed by joining the edges of 3 square pieces of plywood. The
dimension of the box depends of the particle sizesto be measured. A box 15-20cm
along the sides, made of plywood 0.5 - 1 cm thick is suitable for pebbles and small
cobbles. A diagona handle made from a broomstick or a dowel stick is attached to one of
the corner pieces (Fig. 2.8). Thin clear plastic rulersin cm and mm gradations are glued
to the two top edges and the front edge of the corner piece with no handle. The “zero”
marks of all rulers need to be in the corner, so that the distance from the corner can be
read.

To measure the three axes a pebble is pushed into the corner of the first pebble-box. The
second pebble-box (the one with the handle) is alternately placed along the top, side, and
front of the pebble in the box. The length of each particle axis can then be read on the

tape measures. The pebble-box is particularly useful when measuring the three axes of a
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(1.) A particle in the stationary corner (2) Measuring the longest axis
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(3) Measuring the intermediate axis (4) Measuring the shortest axis

Fig. 2.8: Measuring the three particle axes with the pebble-box.

large number of particles. It takes about 20 minutes to measure 100 particlesif a second
operator records the measurements.

Particle b-axes measurements with the pebble-box are similar to measurements with a
ruler, or caliper. Thus, particle sizes need to be converted if they are to be compared to
particle sizes determined with square-hole sieves (Fig. 2.3 and Section 2.1.3.5).
Compared to sieve or template measurements, pebble-box measurements may dightly
overpredict the b-axes of rhombic or diamond-shaped particles. Particles of this shape
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tend to align in the box in such away that b-axes are measured across the largest width,
rather than parallel to the sides of the particle (i.e., along the stippled line b instead of the
solid linebinFg. 2.2).

2.1.3.9 Lab sieving

Sediment from gravel-bed riversis usually dried before sieving®. Wet sediment can be
dried on metal pans (e.g., disposable 10-inch pie plates). Two or three days of exposure to
air at room temperature is usually sufficient to dry gravel, but the drying process can be
accelerated by placing the sediment in an oven at 90°C (194°F) overnight. Particles
should be allowed to cool to room temperature before sieving and weighing, not only to
avoid burning oneself, but also to avoid measuring an increase in particle weight asthe
particle absorbs air moisture during the cooling phase.

For sieving, the gravel from one or more pie platesis poured into the sieve stack that has a
sieve pan at the bottom. The amount of sediment that can be sieved at a time depends on
the number of sieves used and on the particle sizes. It isimportant not to overfill the
sieves. Asarule of thumb, particles should not cover the sievesin alayer more than one
or two particlesthick. Flled in thisway, the sieving process takes about 10 minutes when
sieves are mounted on a shaker (ROTAP), asieving apparatus that automatically shakes
and tapsthe sieve stack. If an automatic shaker is not available, the shaking and tapping
motion can be imitated by placing the sieve stack onto the floor. The operator sitson a
stool in front of the stack, rotating, and tilting the stack forward and backward. A piece of
wood placed under the sieve stack protects the floor and the sieves from damaging each
other, and provides a hard enough surface when sieving in the field. Gravel particles
larger than 8 mm may not require afull 10 minutes of shaking, but particles might still be
sieved out of fine gravel and sand after 10 minutes. Some particles will get stuck in the
sieves and should be removed and added to the sample before sieving the next subsample.
Scrubbing the backside of the sieve and tapping the mesh and the sides of the sieve with a
long handled fine wire brush helps clean the fine gravel sieves. Gentle prying with a
screw-driver removes particles stuck in larger and more sturdy sieves. Care must be taken
not to damage the sieve.

The weighing process depends on the weight range of the scale available in the |ab.
Sieved size fractions are weighed individually for each sieved subsample for small range
scales, but individual size fractions from all subsamples should be combined for large
range scales.

It is recommended to prepare data sheets with one column for retaining (or passing) sieve
sizes, and one or several other columns for the weight retained on each sieve, depending
on the number of subsamples into which the entire sample had to be divided for the
sieving process. The example data sheet shown in Fig. 2.9 isfor gravel and further differentiation
of the sand into size fractions was not needed for that study. Particle weight is usually

2 .. . . . .
Wetsieving as a measure of particle dispersion is not necessary for gravel and sand.
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recorded in gramsor in kg. If the scale has only English units, those should be recorded on
the data sheets. Unit conversions and all subsequent computations such as adding
subsample mass, cal cul ating frequencies and cumulative frequencies should be performed
at alater stage after all data have been entered into a spreadsheet program.

Stream: Date/Time:

Person sieving:

Standard sieve set: yes/ no ROTAP: yes/ no

Sieving duration: (min)

Notes:

Particle size Mass (g) of subsample
(mmor /)

1 2 3 n

Total
64

16

w

»

@

A [
AL S R G e RN

Fig. 2.9: Example data sheet for sieve analysis.

The range of the scale permitting, each subsample should be weighed as atotal before
sieving. Close correspondence between the total weight and the summed weight of all size
fractions makes sure that all recordings are accurate. If this control isnot available, it is
important to double-check the proper recording of each value. All samples should be
retained and put back into their sample bags until after the particle-size analysis, so that
samples can be re-measured if results suggest errors.

Sample splitting

The fine part of alarge sediment sample from agravel bed consists of fine gravel and
sand, and might weigh 10 — 20 kg. Thisis considerably more sediment than is needed for
arepresentative particle-size analysis of this size range (see, e.g., Fig. 5.14 for required
sample mass for a given Do particle size). It might therefore be useful to split the sample
before sieving. A sampleisbest split using a sample splitter. A riffle splitter consists of a
hopper under which a series of up to about 10 equally sized compartmentsislocated. The
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bottom outlets of the compartments are alternately directed to the left or the right side of
the splitter (seeriffle splitter in Fg. 2.10).

Sediment is poured evenly along the entire length of the hopper, making several passes
from side to side. The compartments funnel the sediment alternately to the left or the right
side of the splitter where the sediment is caught in containers. This process splits the
samplein half. Usually, the compartmentalization does not induce sediment sorting, so
that an approximately equal amount of sediment of near-equal size distribution is
contained in each of the two containers. However, the sediment to be split in a splitter
must be dry. Otherwise, fine particles may cling to the compartment walls and produce
subsamples with less fines than the original sample.

One passage through the sample splitter divides the samplein half. If one only needs /8"
of the total sample mass, the sample isrun through the splitter 3 times, one portion is
discarded each time, the remaining portion is split again. If the splitting aim isto obtain a
subsample with about 1/5™ of the total sample mass, the sampleisfirst split into 8
subsamples, two of which are discarded. Three of the 1/8™ splits are combined and split
again to yield a subsample that has 3/16™ of the total sample volume.

Only one of the subsamplesis sieved, unless the operator chooses to sieve several

subsamples in order to compute the accuracy of the sieving result (see two-stage sampling,
Section 5.4.2.1).

2.1.3.10 Field sieving, weighing, volume determination, and counting

Field sieving, templates and sieve sets

The sample mass required for a good statistical analysis of particle sizesis often
approximated by 20 - 100 times the mass of the D, particle size. Thisamountsto 160 -
800 kgin agravel bed with a Dy Of 180 mm (Section 5.4.1.1). Unless vehicle access of
the field site and to the lab is excellent, such large samples can best be accommodated by
sieving the coarse portion of the sample down to 16 or 11.3 mm in the field.

Field sieving requires arelatively large open and dry work space, and dry weather so that
particles can air dry. The surfaces of pebbles air-dry within a day even under overcast
skies, provided particles are well spread out on tarps. The weight difference between air-
dried and oven-dried particlesis usually negligible for pebbles and cobbles, but can make a
difference for sand, or for highly porous particles that retain a measurable amount of

water. The drying processin the field can be accelerated by using black plastic perforated
landscaping cloth instead of tarps, because the fine perforation prevents water puddles on
the cloth, and the black color heats up quickly in the sun. Landscaping cloth islight-
weight, especially when precut into long strips, but not very durable, and some of the fine
sand may pass through the perforation.

After particles are air-dried, any dry sand sticking to larger rocks is brushed off before
sieving. Cobbles and boulders larger than the largest sieve size or template hole are
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measured with calipersor aruler. All three axes are measured, and the corresponding
sieve diameter of those particlesis estimated from the particle b- and c-axis dimensions.

The equipment used to sieve cobbles and pebbles in the field depends on the scale of the
sampling event. A few tarps, one or two templates, a few sturdy plastic shopping bags, and
a hanging scale are sufficient for small sample volumes of only afew buckets. Such a
field sieving kit is also recommended when working at aremote, hike-in, field site.
Starting with the largest particles on the tarp, each particle is picked up and its size classis
measured with atemplate. Thistask isactually less daunting than it might appear at first.
For example, asample of 135 kg from a gravel-bed stream might only contain 26 particles
larger than 64 mm, but these account for 35% of the total weight of the sample (Table 2.2).
Continuing with field sieving down to the 22.6 or 16 mm size class, which requires
handling roughly 600-1000 particles, analyzes 2/3 to 3/4 of the total sample weight
aready. Particles of agiven size class are collected in plastic bags, or in piles on an extra
tarp. The particles of each size class are then weighed using the hanging scale.
Alternatively, the number of particles per size class may be counted, and that number can
be converted into mass per size class at alater stage.

If the site has vehicle access or is a short distance away from the vehicle, it is advisable to
take alab sieve set to the field when sieving larger volumes of gravel. Less bulky than a
stack of lab sievesis a (home-made) sieve box consisting of aframe (approximately 0.2 by
0.3 m, 0.1 m high, into which screens of different mesh width can be inserted (Tom Lidle,
pers. comm, 1998). Particles sieved into different size classes are collected on tarps,
pails, plastic tubs, or in strong ziploc bags, depending on the extent of the sampling
project. After sieving, particles of asize class can either be weighed, or counted.

Thereisno rule regarding the lowest sieve size for field sieving, although fine gravel and
sand can probably be sieved more conveniently in the lab. If the unsieved portion of the
sampleislarge, it can be split in the field so that sufficient sediment for the remaining
largest particle-size classistaken to the laboratory for a standard sieve analysis. A
subsample mass of 6 kg is quite sufficient if particles larger than 16 mm have been
removed in the field (Eq. 5.40 and Fig. 5.14 provides a relation between required sample
mass for a given D particle size). One method of splitting asamplein thefield isto
distribute scoops of sediment from the sample alternately into a series of empty buckets.
The number of buckets used depends on the desired sediment mass for the subsample. The
first scoop goesinto bucket 1, the second into bucket 2, etc, until all sediment from the
sampleisevenly distributed. The volume and the mass in each bucket should be equal. A
sturdy ladle works well for scooping sandy and fine gravelly sediment. The number of all
subsamplesis recorded, but only one of the subsamplesisthen taken to the lab.

Well thought out field sieving equipment is essential when undertaking an extensive field-
sampling program. The minimum field equipment consists of alarge rockable sieve-box
(ca. 0.5 by 0.5 m, and 0.15 m high) with exchangeable pieces of meshwire corresponding
sieving and splitting apparatus to the field site. The device (Fig. 2.10) consists of aframe,

3 Research Hydrologist, Pacific Southwest Forest and Range Experiment Station, Arcata, CA.
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to sieve sizes. When sieving tons’ of sediment, |bbeken (1974) recommends bringing a
approximately 0.5 by 0.5 m, and 0.7 m high, into which a sieve and a sample splitter can
be inserted. The bottom of the frame is connected to a springy and rockable stand (old lab
stool). Two operators can sieve 0.5 - 1 tons of gravelly sediment per day with this
apparatus. The large masses of sediment to be handled require a large number of tarps and
tubs, and a robust field scale for weighing.

Particle weighing

Particles collected per sieve class can be weighed in the field using an accurate hanging
scale that is best hung from a strong tree branch, or from atripod. The particlesto be
weighted are placed into a plastic shopping bag. Such bags have negligible weight, but do
not withstand much use, so a supply is necessary.

Two scales with different ranges are useful if the sample contains large cobbles and small
boulders. Particle weight per size classin aunimodal sample of about 150 kg from a
gravel-bed ranges between 1 and 20 kg (Table 2.2). Thus, ascalewitha0.1-10kgis
suitable. Within the 100 g gradation, readings can be visually interpolated to the nearest
10 or 20 g. If the weight per sieve class exceeds 10 kg, particles are weighed in two
batches. Large cobbles and small boulders are weighed individually. If their individual
weight exceeds 10 kg, a scale with alarger range is needed, or the particle weight is
computed by measuring particle volume and multiplying by an assumed particle density.

Determination of particle volume

It may be useful to determine particle volumein thefield. If all particles are of known
density, weight can be computed from particle volume. If particles are of distinctly
different densities, such as volcanic rocks that range from massive basalt to vesicular
pumice that floats on water, it is useful to determine both particle volume and weight to
compute particle density. A tall, straight-walled, bucket with a known diameter and a
holding capacity of about 3 to 5 gallons can be used for measuring particle volume. The
bucket isfilled with water to about half its capacity and the water level isread before and
after the cobble is completely submerged. The bucket should stand on alevel surface
when reading the water level. If alevel surfaceisnot available, the bucket can be
shimmed until level, using abuilder’slevel to verify that the bucket is horizontal. If that is
not possible, the water level needsto be read at several locations and averaged.

* Ton (English units) = 907.185 kg = 2000 Ib; Metric ton = 1,000 kg = 2,204.63 Ib.
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Fig. 2.10: A sieving and splitting device: (1) basal plate, (2) catch bins, (3) rockable, springy stand, (4) central
frame, (5) deflecting board, (6) riffle splitter, (7) splitter board, (8) screen frame, (9) screen, (10) assembled
device with general measurements (Reprinted from | bbeken (1974), by permission of the Society of
Sedimentary Geology).
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Table 2.2: Example of the number of particles
and weight per size class in a volumetric bed-
material sample. Particles finer than 8 mm were
not counted.

SizeClass No. of Weight % Finer
(mm) Particles (kg) by Weight

256 0 0 100
180 1 16 88
128 1 6 84
90 5 10 76
64 19 14 65
45 66 18 52
32 169 16 40
22.6 326 11 32
16 716 9 25
11.3 1519 7 20
8 6 16
5.6 5 13

4 4 10
2.8 4 7

2 2 5
<2 _7 4

2=135

Water levels can be read more easily if a clear plastic tube is mounted along the outside of
the bucket. The tube is connected to the inside of the bucket through a hole at the top and
the bottom of the bucket. Thus, the water level in the bucket is equal to the water level in
the tube outside of the bucket. A ruler mounted next to clear plastic tubing and a drop of
dye in the tubing makes the reading even easier. Again, it isessential that the bucket is
level.

Particle counting

Counting the number of particles per sieve classis an option if conditions are unfavorable
for field weighing. Since the laboratory sieve analysis of sand and pebble particle sizesis
mass based, the number of particles counted per sieve class needs to be converted to mass as
well. A generalizable relationship can be obtained from the following study.

A relation between mean weight of particles my; (g) and the retaining sieve Size Dyesqi (in
mm) was established for six bedload- and bed-material samples from mountain gravel-bed
rivers with mainly granitic or andesite petrology. Particle shapeswithin a sample varied,
ranging from compact to elongated. A power function in the form of my; = a Dyeysy)i P \was
fitted through the data and yielded a coefficient of determination r? = 0.999 (Fig. 2.11).
Particle density and shape, as well as measurement errors cause slight variability between
samples, but for six sediment samples from various gravel-bed streams examined in a study
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by the authors, coefficients ranged between 0.0024 and 0.0036, while exponents ranged
between 2.92 and 3.04. The mid point of all coefficients and exponents obtained for mean
particle weight per square-hole sieve size yielded the equation

2.98
My = 0.00307 (Dret(sq)i) (2.14)

where my,; isthe mean weight of particles (g) and D,«sg)i iSthe retaining sieve size (in mm)
Eq. 2.14 is applicable to mountain gravel-bed streams where bed material comprises a
variety of different particle shapes and where a particle density of approximately 2.65
g/cm® can be assumed.

Particle Size (¢@-units)

8 113 16 226 32 453 64 905 128
Retaining sieve size D, (Mmm)

Fig. 2.11: Measured mean particle weight for sieve sizesin 0.5 g-increments for square-hole sieves (m) and
the regression function (o). Sediment from Squaw Creek, MT.



2.1.4 Computation of the particle-size distribution

The statistical analysis of a bed-material sample starts with computing a particle-size
frequency and percentage frequency-distribution from which a cumulative frequency
distribution is computed in the third step. Percentiles are determined from the cumulative
distribution curve, and used by themselves, for example when comparing Dsy Sizes, or to
derive particle-distribution parameters such as mean, sorting (i.e., standard deviation) and
skewness that characterize the distribution as awhole. Particle-distribution parameters
can also be computed directly from afrequency distribution (moment methods).

2.1.4.1 Particle-size frequency and cumulative frequency distribution

The result of alaboratory or field particle size-analysisis arecord of particle weight (or
particle numbers) retained on each sieve size (see data sheet in Section 2.1.3.9). The
weight per size classisthen entered into a spreadsheet table (see column 1 and 2 in Table
2.3) for al subsequent computations. The first step of analysisisto compute the
percentage weight or number frequency for each size class. The weight or number of
particlesin each size classis divided by the total sample weight or particle number and
multiplied by 100 (column 3). The result can be plotted as a percentage frequency
distribution (histogram) using a bar graph (Fig. 2.12). Next, the percentage of particle
weight or numbers retained on each sieve is converted into the percentage of particle
weight or number passing the next larger sieve size (column 4).

For example, arecord showing 9.1% of particle weight retained on sieve size 32 mm
becomes 9.1% of particle weight passing the sieve size of 45 mm. The percentage particle
weight or particle number per size classisthen summed starting with the finest size class.
Thisleadsto a cumulative weight distribution (column 5) in terms of percent finer than or
percent finer the indicated size class. The cumulative distribution curve could
theoretically al'so be computed in terms of percent coarser or percent retained, but the
percent finer or percent passing approach is the commonly used approach for particle-size
distributions.

The cumulative particle size-distribution curve (Table 2.3), also called the sieve curve, or
the gradation curve, is plotted with the particle-size classes from column 1 or 2 asthe
abscissa (x-axis, horizontal), and the percent finer by weight (column 5) on the ordinate
(y-axis, vertical) (Fig. 2.12). If the analysisis based on frequency-by-number, such asin a
pebble-count, the percent finer by number is plotted on the ordinate. If particle sizesare
expressed in @-units, the x-axisis kept linear. If particle sizes are expressed in mm, the x-
axis should be expressed in alogarithmic scale. Alternatively, the mm-sizes of particle
size-classes can be plotted in equally spaced increments along the x-axis (asin bar or line
graphs). Segments of the cumulative distribution curve are connected by straight lines.

Data plotting is often the first step of analysis, especially when dealing with a sample from
anew stream site. Visualization of the frequency histogram and the cumulative frequency
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Table 2.3: Example of a particle-size analysis for a 103 kg sample of subsurface sediment taken at mid-
stream in a mountain gravel-bed stream (Squaw Creek, MT).

(1  (1b) 2 (©) ©) ®) (6) (7
X-aXis. yy-axis: Yo-axis.
Size of Weight retained Weight Cumulative Percentiles
sieve on sieve passing seve  weight
(mm) (9 (kg) (%) (%finer) (cum. %finer) (@) (@  (Dp (mm)
<2 <1 6.7 6.5 - -
103 -0.89 Ds 18
2 -1.0 2.3 2.3 6.5 6.5
2.8 -15 25 24 2.3 8.8
4 -2 2.6 25 2.4 11.2
5.6 -2.5 37 3.6 25 13.7
(RLG -2.82 D16 7.1
8 -3.0 53 5.1 3.6 17.3
11.3 -3.5 7.8 7.6 51 224
@s -3.67 Dy 127
16 -4.0 9.6 9.4 7.6 30.0
22.6 -4.5 10.9 10.6 9.4 394
32 -5.0 9.3 9.1 10.6 50.0 @o -5.00 Ds 32.0
45 -5.5 11.4 111 9.1 59.1
64 -6.0 12.2 109 111 70.1
@5 -6.22 D+ 74.7
90.5 -6.5 7.4 7.2 109 811
@ -6.70 Dg, 1043
128 -7.0 5.4 5.3 7.2 88.2
181 -7.5 6.6 6.5 5.3 935
@s -7.61 Dgs 195.8
256 -8.0 0.0 0.0 6.5 100.0
total: 102.7  100.0

distribution provides afirst impression of the data and is helpful for interpretation. If the
graph is used mainly for demonstrative or visualization purposes, the y-axisis usually

plotted in alinear scale. If percentile values are to be read off the graph, plotting the y-
axis on probability paper increases the accuracy with which the particle size of small and
large percentiles can be read.
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Fig. 2.12: Frequency distribution (histogram with hatched bars) and cumulative frequency distribution curve
(thick line) with indicated percentile values for data listed in Table 2.3.

2.1.4.2 Percentiles and their computation

Two sediment mixtures of different particle sizes are usually distinguished by comparing
several of the percentile values of the two distributions or the parameters derived from the
percentiles. A percentile isa sediment size indicated by the cumulative distribution curve
for aparticular “percent finer” value. For example, the sediment size for which 80% of
the sediment sampleisfiner isthe “80th percentile”. The notation is Dgy, where D
represents particle size (in mm) and the subscript “80” denotes 80%. The D5y isthe
median point of the distribution that divides the distribution in two equal parts. The
particle size for which 25% of the distribution isfiner is the 25th percentile, or the Ds.
The D,s and D75 are also called quartiles. Theoretically, any percentile value can be used
for comparison, but customarily, the particle sizes of the Dsy, (i.e., the median), the Dys
and D5 (quartiles), the D1g and Dgg, and the Ds and Dgs are used. In anormal distribution,
one standard deviation from the median encompasses all data between the D¢ and the Dgq4
and are the points on a distribution curve at which the change of curvature occurs). The
Ds and Dgs characterize the distribution tails. Data between the Ds and the Dgs comprise
almost two standard deviations on either side of the Dsy or median. Those 7 percentiles
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may be compared as individual values, or be used to compute distribution parameters such
as mean, sorting (i.e., standard deviation), and skewness (Section 2.1.5).

Reading percentiles off a graph plotted on probability paper

Before spreadsheet programs became commonly available, percentiles were often
graphically determined from the cumulative particle-size distribution curve plotted on
normal probability paper. The y-axis of this graph paper extends from a small value > 0 at
the lower end to avalue just below 100 at the high end. Probability partitioning spreads
the y-axis range at the low and the high end, while compressing the central range around
50. The x-axisislinear for particle sizesin ¢-units, and lognormal for particle sizesin
mm-units. Probability graph paper in linear and logarithmic partitioning is provided in the
appendix. The graph of a cumulative particle frequency-distribution approaches a straight
line as particle size-distributions approach normality, or lognormality, respectively. A
probability plot enables the user to read percentile valuesin g-units off the graph, but
plotting by hand becomes tedious when dealing with large data sets.

Mathematical linear interpolation

An alternative to plotting on probability paper isto compute percentiles mathematically by
linear interpolation between two known data pairs of sieve sizein @-units and their
percentile valuesin a cumulative distribution. Particle size-classesin mm require a
logarithmic interpolation, which means that the mm size classes need to be log-
transformed before the interpolation (log D). A particle size ¢, of adesired percentilexin
@-units can be computed from:

%= (X~ %) - %% X1 (2.15)

y, and y; are the two values of the cumulative percent frequency just below and above the
desired cumulative frequency yy (see shaded valuesin Table 2.3, column 5), and x, and x;
are the particle sizesin @-units associated with the cumulative frequenciesy, and y; (see
shaded valuesin column 1b in Table 2.3). The example below illustrates how the particle
size of the percentile @6 is computed for the particle-size distribution in Table 2.3 using
Eq. 2.15.

G = (-3--2.5) - 1176 3 1i37 7§+ -25=-2.82¢ (=7.1mm) (2.154)

Likewise, the D¢ is computed from:
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Dys = 100 @og ) - log (5.67)) - %@ log (5.67)@: 7.1mm (2.15h)

Note that the error incurred if the computation is performed with particle sizesin mm
without log transformation is relatively small and can maximally reach 1.7 % compared to
the result that would have been obtained if log transformed data were used.

2.1.4.3 Testing for various distribution types

Gravel deposits are typically not made up of one particle size only, but comprise a variety
of particle sizes that may take up various portions of the sediment volume. One possibility
isthat particle sizes of each size class (in terms of @-units) may comprise approximately
even portions of the total sediment volume (uniform distribution). More typically,
medium particle sizes comprise most of the sediment volume with little sediment in the
finest and coarsest size classes (normal or log-normal distributions).

Huvially transported sediment from gravel-bed rivers often tends to roughly approximate
lognormal distributionsif particle sizes are expressed in mm, or approximate normal
(Gaussian) distributions if particles sizes are expressed in ¢@-units which are alogarithmic
transformation of particle sizesin mm. Assuming an underlying normal distribution for
approximately normal particle-size distributions is convenient because normality isthe
prerequisite for several statistical applications. Normality isrequired for (1) binning
particle sizesin g-units, for (2) confidence in the results of standard descriptive statistical
procedures, as well asfor (3) confidence in the results of common sample-size equations.

In astrict statistical sense, particle-size distributions in @-units are often not normally
distributed (Church and Kellerhals 1978; Church et al. 1987; Rice and Church 1996b).
The tolerable degree of departure from normality varies depending on the planned
statistical analysis. Small departures from normality usually do not pose problems when
applying statistics that assume normality, but large departures do. If normality iswrongly
assumed, results of standard descriptive statistical parameters (e.g., the sample mean,
sorting, skewness and kurtosis) may not be accurate and may not serve well to
discriminate between samples.

Small departures from normality, however, can greatly affect the sample size required for
sampling specified percentiles with a preset precision. For example, in distributions that
have atail of fine sediment, alower sample size than computed from standard sample-size
eguations may suffice to predict the Dgs of the distribution with a preset precision.
Contrarily, sample size has to be considerable higher than computed to precisely predict
the D5 (Section 5.2.3.4). Church et al. (1987) and Rice and Church (1996b) therefore
recommend that no particular distribution should be assumed for sediment from gravel-
bed rivers, not even for large samples for which normality is more intuitively assumed
than for small samples. Equations have been developed for estimating sample size when no
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particular underlying distribution type is assumed (Section 5.4.1.1). Sample mass
predicted from these equationsis similar to the sample size predicted by equations based
on normal distributions for accurate sampling of high percentiles (Section 5.4.3). But
equations based on normal distributions predict that a much lower sample mass would
suffice to accurately predict central percentiles.

If a user wants to acknowledge that a particle-size distribution is not strictly normal (in
terms of @-units), non-parametric statistics could be applied. Non-parametric statistics are
necessary if the data severely deviate from normality. However, non-parametric tests are
only beginning to enter mainstream statistical analyses in geomorphology, and results
from arelatively unknown test might not be very convincing to areader. The reader is
referred to the statistical literature for non-parametric statistics, none of which are
described in this document.

A particle-size distribution can be tested for normality and lognormality in several ways.

» visual evaluation of the plotted graph,

* regression analysis between the cumulative frequency and the respective particle-size
classes,

» comparison of frequency distribution with ideal Gaussian or Rosin distributions,

» probability plot of residuals with regression analysis, and

» standard tests for normality and lognormality.

Visual evaluation of the plotted graph

The likelihood of whether a given distribution is normal or lognormal can be estimated by
plotting the cumulative size distribution of particle sizesin gunits on normal probability
paper”. Lognormal probability paper is used for plotting if particle sizesarein mm®. The
straightness of the graph is assessed visually. Ideal normal, or lognormal distributions,
respectively, plot as straight lines.

Some computer based statistical packages and some newer spreadsheet programs provide
plots on a probability-scaled y-axis for a visual assessment of the degree of normality or
lognormality. If such aprogram isnot available, a spreadsheet program can be used to
approximate a probability scale. Thefirst step isto compute a cumulative particle-size
distribution in which the frequency is expressed in decimals, i.e., as 0.4 instead of 40%.
The unsieved remaining particles, i.e., the contents of the “pan” should be excluded from
thisanalysis.

The cumulative frequency distribution can be interpreted as the probability with which to
expect a particular particle-size class. A standard normal distribution (or standard normal
density function) has a given probability p; (y-axis) for each value z; (x-axis of a bell-
shaped normal distribution). The valuesfor p and z, are listed in tables of any general
purpose statistics book. For example, probabilities of 0.5, 0.75, 0.975, and 0.99 are

® Provided in the appendix of this document.
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obtained by z, values of 0, 0.675, 1.96, and 2.33. Since the normal distribution is
symmetrical, probabilitiesof 1 - 0.99 = 0.01, and 1 - 0.975 = 0.025 are obtained by z,
values of -2.33, and -1.96, respectively. The relationship between z, and p can also be
approximated from various equations. One of the possibilities provided by Stedinger et al.
(1993) isthe equation

0.135 _ (1 _ p)0.135

p
%= 0.1975

(2.16)

Using this equation, the z, value associated with each probability, i.e., each decimal
fraction of the cumulative particle size-distribution can be computed in a spreadsheet. Ina
plot of z, values versus particle size, the resulting graph is a straight line for normally
distributed samples (Fig. 2.13). Deviation from a straight line can be visually assessed by
comparison with a best-fit handfitted straight line. For particle-size distributions, a
deviation from a straight line is usually most pronounced in the distribution tails, a

Particle Size (@-units)
1-15 -2 -25 -3 -35 -4 -45 5 55 -6 6.5 -7 -7.5 -g Probadility
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Fig. 2.13: Z,-vaues versus particle size for an approximate normal distribution (@) (particle-size distribution
shown on Table 2.3 and in Fig. 2.12) and a non-normal block distribution (v).
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phenomenon easily checked by the visual assessment. If the deviation of the distribution
tailsis pronounced, truncating the data set to the range of @6 to @4, for example, might
straighten the graph.

Caution should be used when interpreting the results of this method. The graph with the
black circlesin Fig. 2.13 isthe particle size-distribution shown in Table 2.3 and Fig. 2.12.
The plotted data points seem to resemble anormal distribution well enough to justify the
assumption of anormal distribution, and hence to compute distribution parameters or the
sampling accuracy for a given sample size. However, non-normal distributions do not
necessarily show excessive deviation from a straight line in such plots. Even a definitely
non-normally distributed data set that comprises alternate frequencies of 12, 2, 12, 2, etc.
for consecutive particle-size classes yields an seemingly reasonable fit to a straight line
(graph marked by black trianglesin Fg. 2.13). Thislack of a standard regarding the
tolerable degree of deviation from a straight line is a disadvantage of the visual method.

Evaluation and comparison of regression coefficients

A regression analysis can be performed that regresses In(y), with y = cumulative
frequency, versus x, the particle sizein @-units. The coefficient of determination r®is
computed for the best fit exponential regressiony = a- €” *. The closer r? approaches the
value of 1, the closer the fit with anormal distribution. This approach is useful when
comparing the goodness-of-fit to a normal distribution between two samples with a
similar range of particle sizes. However, there are no standard values that r* needs to
obtain in order for the distribution to qualify asnormal. Thisis because the value for r* is
highly dependent on the particle-size range of the sample.

Comparison with best fit normal and lognormal distributions

Another test for normality of particle-size distributions in @-unitsisto compute the

normal distribution that most closely resembles the measured particle-size distribution
and compare the observed and computed distribution. The difference between samplesis
expressed as a percentage value that then is used to compare the goodness-of-fit between
samples. The standard normal distribution in its notation for grouped (i.e., “binned”) data
is

1 Y
G = o P ﬁ%}#ﬁ 2.17)

where G; isthe frequency of an equivalent Gaussian distribution for theith size classin
@-units, @ isthe particle size of theith classin gunits (Schleyer 1987). u usually denotes
the distribution mean, but Schleyer (1987) suggests that the distribution mode (i.e., the
size class with the largest frequency) is a more appropriate parameter when analyzing
coarse sediment samples in which the finest and the coarsest fractions may not be
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representative of the population. Unrepresentative distribution tails affect the distribution
mean, but not the mode. If particle frequency-distributions are too irregular in their
central partsto benefit from using the distribution mode, the distribution median should
be used instead. Various ways of computing a graphic arithmetic mean for particle sizes
in @-units are explained in Section 2.1.5.3 (Eqs. 2.31 - 2.34). oisthedistribution
standard deviation. In order to minimize the effects of possible truncation on g, Schleyer
(1987) suggests substituting o by a sorting coefficient s which is computed from

Ss=0.75 (@5 - @s) (2.18)

and focuses on the more central parts of the distri bution®. The constant in Eq. 2.19 could
be set to 0.5 if normality of the data was not assumed. However, using the constant of
0.75 renders the numerical values of sssimilar to the Inman sorting coefficient s (EQ.
2.46, Section 2.1.5.4)

If particle-size data are in mm units, correspondence with a standard lognormal
distribution should be tested instead of a normal distribution. The standard lognormal
distribution is given by (Gilbert 1987)

1 InD;-D
Lpi=——F7— exp- 2.19
Di o \E[ p 2 ( )

where Lp; isthe frequency of an equivalent lognormal distribution of the ith size classin
mm. Dy, isthe arithmetic mean of the log-transformed data and could be computed as

i n
Dm = et ;(Dci - m) (2.20)

where D isthe center of classin @units of ith size class, m isthe weight of particles
retained for the ith size class, and my, is the total weight of particles per sasmple. Eq. 2.19
can also be applied to number frequencies. In thiscase, m in Eqg. 2.20 becomes n;, the
number of particles per size class, and my becomes n, the total number of particles per
sample.

Other possibilities to compute a distribution mean are shown in Section 2.1.5.3. oisthe
distribution standard deviation and computed from

6 o denotes the standard deviation of a population, s denotes the sample standard deviation. Sorting coefficients denoted
by s are an abbreviated computation of standard deviation based on a few percentiles of the distribution.
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o (InDg - Dy)? (2.21)

Nes:

In symmetrical distributions, o could be approximated by

||Mx

0g D84 I 0og Dlﬁﬁ

o= 100" @ (2.21a)

which is analogous to the Inman (1952) sorting coefficient 5 (Eq. 2.46). The goodness-of-
fit to a Gaussian distribution is computed from the absol ute differences between the
cumulative percent frequency of the ith size class (Zmy;) of a bed-material sample and the
cumulative percent frequency of the ideal Gaussian distribution (ZG.;). These differences
are summed over all size classes k and divided by k-1 (Schleyer 1987).

. 1 K
% Gaussfit = 100% - = - D O(ZMmy - ZGoq)U] (2.22)

i=1

Similarly, the goodness-of-fit to lognormal distributions can be computed from:

. 1 &
% lognormal fit = 100% - PEh ZD(Zm%i - 2Lo4)0 (2.23)
i=1

The percent goodness-of-fit is affected by whether the percent frequency is allotted to the
retaining sieve size D,¢ Or the center of class particle size D, and by how the data are
summed. If the percent frequency is alotted to D, and summed such that a 100%
cumulative frequency isreached at the D of the largest size class, the resulting cumul ative
frequency isinterms of “aslarge as or finer than” (<) the center of class of the largest size
class. If the percent frequency is allotted to the retaining sieve size D, ¢, and summed so
that 100% cumulative frequency is reached at the size class above the one with the largest
particle, the cumulative frequency isin terms of “smaller than” (<), or percent finer than
the indicated sieve size. Both procedures were applied to the same particle-size
distribution (Table 2.3 and Fig. 2.12) to show the resulting difference (Table 2.4 and Fig.
2.14). A goodness-of-fit of 94.3% was obtained when using the center of class D,
whereas a goodness-of-fit of 97.2% was obtained when using D,¢. Thus, computational
consistency isimportant when comparing the goodness-of-fit between samples. The
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Table 2.4: Computation of goodness-of-fit for particle-size distribution in Table 2.3 and Fig. 2.12. ¢ =
3.99; @5 = 6.3; ss= 1.73 (Eq. 2.18); u=5.75 ¢ Resulting goodness-of-fit (Eq. 2.22) = 97.2%.

Original distribution Equivalent Gaussian distribution
No. of Cum. Cum. Absolute
size Size class Mass Freq. freq. Eqg. 2.17 Freq. freq.  difference
class Q@ D; m My 2 My Gy G 2Gy  2Myi-2 Gy
(@ (mm) (kg) (%) (%) () (%) (%)

) 2 ©) 4 ©) (6) (6) ) ©) ©)
1 1.0 2 2.3 2.4 0.0 0.005 0.3 0.3 0.3
2 15 2.8 25 2.6 2.4 0.011 0.6 0.9 15
3 2.0 4 2.6 2.7 5.0 0.022 1.2 21 2.9
4 25 5.6 37 3.8 7.7 0.039 21 42 35
5 3.0 8 5.3 55 115 0.065 35 7.7 3.8
6 35 11.3 7.8 8.1 17.0 0.099 54 13.1 3.9
7 40 16 9.6 10.0 25.1 0.138 7.5 20.6 4.6
8 45 22.6 10.9 11.4 35.2 0.178 9.6 30.2 5.0
9 5.0 32 9.3 9.7 46.5 0.210 11.4 415 5.0

10 55 45.3 114 11.8 56.2 0.228 124 53.9 24
11 6.0 64 11.2 11.7 68.1 0.228 124 66.2 19
12 6.5 90.5 7.4 7.7 79.8 0.210 11.4 77.6 2.2
13 7.0 128 54 5.7 87.4 0.178 9.6 87.2 0.3
14 7.5 181 6.6 6.9 93.1 0.138 7.5 94.7 1.6
15 8.0 256 0.0 0.0 100.0 009 54 100.0 ~0.0

totals: 96.0 100.0 1.85 100.0 38.9

computational difference becomes smaller as the number of particle-size classes
increases, which could be achieved if the sample size islarge enough to facilitate sieving
in size classes of lessthan 0.5 @

Comparison with best-fit Rosin distribution

The Rosin exponential distribution was developed for coal milling purposes (Rosin and
Rammler 1933, cited after Ibbeken 1983) and applies well to crushed rock. Bed-material
frequency distributions that follow Rosin’s distribution are skewed towards fine particles
and the mode corresponds to the 36.78th percentile (Fig. 2.15) which is approximately the
Dg3 if the cumulative frequency is computed as the percent finer or percent passing. The
Rosin distribution is typical of jointed rock and unweathered slope sediment, and hence to
sediment supplied to the stream from hillslopes (Ibbeken 1983). Thus, testing for aRosin
distribution might be worthwhile, if the bed material has atail of fine sediment (skewed
towards fines) and sediment was supplied from unstable hillslopes.

For particle-size distribution where the center of classis adistinct value representing the

total class, theidea Rosin distribution corresponding to the measured distribution is
computed from (Schleyer 1987)
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Rpi = exp - %‘ﬁ?? - exp- %ﬁiﬁﬁa (2.24)

where Rp; isthe frequency of an equivalent Rosin distribution for the ith size class, Dyas
isthe passing sieve size for the ith size classin mm, and D,y is the retaining sieve size
for

Particle Size (@-units)
-1 -15 -2 -25 -3 35 4 45 5 55 6 65 -7 -7.5 -8

Cumulative Frequency (%)
Weight Frequency (%)

32 64 128 256
2.8 56 11.3 226 453 905 180

Particle Size (mm)

—m— orig. distr., % < thancntr.of class ——— ideal Gauss., % < than cntr.of class
—e— orig. distr., % < than sieve size —©— ideal Gauss., % < than sieve size

Fig. 2.14: Goodness-of-fit computations based on cumulative frequency in terms of < D, and in terms of <
than D¢ (% finer or % passing).

theith size classin mm. Dyqe IS the mode of the distribution, and sz is the sorting
coefficient which for a Rosin distribution is computed from

2.15

= — 2.25
R Bsa- Giga ( )
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Fig. 2.15: (A) Histograms of ideal Rosin distributions, increasingly poorly sorted from 1to 5. Cumulative
frequency curves of these distributions are plotted on Rosin-coordinate probability paper (B), and on
lognormal probability paper (C) (Reprinted from Ibbeken (1983), by permission of the Society of Sedimentary
Geologists).

50



The goodness-of-fit to a Rosin distribution can be computed from (Schleyer 1987):

. 1 K1
% Rosin fit = 100% - PR O(ZMy - ZRy) 0 (2.26)
=1

where 2y is the cumulative percentage weight frequency of ith sieve class, and ZRy; is
the cumulative percentage frequency of the computed Rosin distribution for the ith sieve
class, and k is the number of sieve classes.

Computed this way, the goodness-of-fit to Gaussian and Rosin distributions is independent
of the range of the particle sizesincluded in the analysis and the degree of truncation of
the size distribution. Hence, bed-material sediment can be partitioned into agravel and a
sand fraction, and goodness-of-fit can be computed for each part individually, a procedure
useful for the analysis of bimodal sediment. Goodness-of-fit to Gaussian, or Rosin
distributionsis also independent of the degree of skewness (Section 2.1.5.5) of the bed-
material distribution in question. A Gaussian size-distribution that is skewed towards fine
particles does not automatically receive agood fit to a Rosin distribution, nor are good
Rosin fits reserved for distributions skewed towards fines.

An analysis of the goodness-of-fit to a Gaussian or Rosin distribution can be useful in two
ways: First, summary statistics used to describe particle-size distributions may not be
meaningful or appropriate, if the fit to a Gaussian distribution is poor. Second, the
goodness-of-fit to a Gaussian or a Rosin particle-size distribution can in and of itself serve
as ameans to analyze fluvial transport distance (Krumbein and Tisdel 1940; Kittleman
1964, both cited in Ibbeken 1983, and Schleyer 1987). A good fit to anormal distribution
indicates that the particle-size distribution was derived due to transport controlled factors,
whereas a good fit to a Rosin distribution indicates that the particle-size distribution is
controlled by supply from the rock source.

Probability plot of residuals and regression analysis

Another procedure to quantitatively evaluate normality is suggested by Neter et al. (1990).
The procedure prepares a normal probability plot of residuals and conducts a regression
analysis. A residua e inaset of x- and y-data is the difference between an observed value
y; and the value Y; predicted from aregression analysis. For the analysis of normality, the
ranked residuals g are plotted against the values E; which the residual s are expected to
have under normality. Near linearity of thisfunction indicates that the distribution is near-
normal. The degree of linearity, and thus the degree of normality, can be evaluated by the
coefficient of correlation r. Thisvalue can be compared with table values of r for
specified sample sizes and confidence levels to determine whether near-normality can be
assumed.

Thefirst step in assessing normality for particle-size frequency distributionsis to compute
the residuals g which are the positive or negative difference between the observed
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cumulative percent frequency for a particle size-class D; and the cumul ative percent
frequency of an equivalent Gaussian distribution (Eq. 2.17). The next step isto rank the
residualsin ascending order from g - ; to e - «, where k is the number of size classes. The
expected value E; of the ranked residuals under normality is computed from

o 020

z(A) isthe percentile of a standard normal distribution. The table value for z(A) of e.g.,
0.841is1.00. If Aissmaller than 0.5, zislooked up under A-1 and yields a negative
value. For example, if A=0.159, z(0.159 - 1) = z(-0.841) = -1.00.

Table 2.5 shows the computation of expected values for the residuals E; using the
example particle size-distribution listed in Table 2.3 and shown in Fg. 2.13. The
residuals g of the observed cumulative percent frequency (column 1in Table 2.5 and
column 6 in Table 2.4) and the cumul ative percent frequency of the equivalent Gaussian
distribution (column 2 in Table 2.5 and column 9 in Table 2.4) are computed in column 3
of Table2.5. Theresiduals g are then ranked in ascending order (column 5 of Table 2.5).
The summed term in Eq. 2.27 equals 141.02 (sum of column 6) for the example particle
size-distribution, and the square-root term is (141.02/(15-2))%° = (10.85)"° = 3.294.

For the smallest residua g withi =1, E; is computed as:
-0.37
\/10.85 - z 5 J?g 255§: 3.294 - 7(0.041) =3.294 - z(0.959) =3.294 - -1.739=-5.728

For the second smallest residual g withi = 2, E; is computed as:
- 0.375
1/10.85- z 540 25@2 3.294 - 7(0.107) =3.294 - z(0.893) =3.294 - -1.243=-4.094

The expected values E; are symmetrical, so that largest and the second largest values of E;
are 5.728 and 4.094, respectively. Table 2.5 listsall values of E; in column 10.

For avisual assessment of normality, the ranked residuals g are plotted against their
expected values E; (Fig. 2.16). The closer the data pointsfit to a straight line, the closer is
the degree of normality. In addition to a visual assessment, the closenessto a straight

line, and thus the degree of normality, can be mathematically quantified. To do so, the
ranked residuals g are compared to the values expected under normality E; by computing
alinear regression function E; =a - e +b. The values E; predicted from the regression
function are listed in column 11 of Table 2.5 and plotted in Fig. 2.16. The coefficient of
correlation r is used to indicate the departure from normality. Atr = 1, the distributionis
normal .
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Table 2.5: Computation of normality for residuals

Orig. Gauss. residual

distr.  distr. € ranked (i-0.375) expect. pred.
% 5% (1)-(2 rank g e’ (k+0.25) (9)-1 z E E
1 @) @ @ O (6) (7 ) €) (10) (11

0.0 03 -029
24 0.9 1.54
50 21 294
7.7 42 350
115 77 3.80
17.0 131 3.95
251 20.6 4.58

-1.56 242 0.041 -0959 -1739 -573 -131
-0.29 0.08 0.107 -0.893 -1.243 -409 -0.27
0.00 0.00 0172 -0.828 -0948 -3.12 0.35
0.25 0.06 0238 -0.762 -0.713 -2.35 0.85
154 2.38 0303 -0.697 -0516 -1.70 1.26
1.87 3.48 0369 -0631 -0335 -1.10 164
2.18 4.77 0434 -0566 -0.168 -0.55 1.99

O©CoO~NOOOTPA~,WNPEP

352 302 5.02 2.37 5.63 0.500 0 0 2.34
465 415 5.01 2.94 8.64 0.566 0.168 0.55 2.70
56.2 539 2.37 10 350 1228 0.631 0.335 1.10 3.05
68.1 66.2 1.87 11 380 1441 0.697 0.516 1.70 3.43
79.8 776 2.18 12 395 1557 0.762 0.713 2.35 3.84
874 872 0.25 13 458 2101 0.828 0.948 3.12 4.34
931 947 -15 14 501 2512 0.893 1.243 4.09 4.96
100.0 100.0 _0.00 15 502 2517 0.959 1.739 573 6.00
35.17 141.02

y=0.638 x + 2.345

Ranked residuals e;

Expected values E;

Fig. 2.16: Normal probability plot of ranked residuals versus their expected values under normality. The
example particle size-distribution listed in Table 2.3 and shown in Fig. 2.12 is used for the computation.



Asr becomes < than 1, the distribution departs from normality. Looney and Gulledge
(1985) provide table values of r that need to be exceeded to assume near-normality for
different levels of significance (Table 2.6) and number of data points used for the
regression (i.e., the number of size classesk). Anr-value larger than 0.989 for k = 15
indicates that the null hypothesis of normality is not rejected in 90 out of 100 cases, and
not rejected in 10 out of 100 casesif r islarger than 0.951. Neter et al. (1990) suggest
that departure from normality is not substantial if r exceeds the critical valuesfor a =
0.05. For k =15 this means that even if normality were true, an r as small as 0.939 would
only occur in 5% of all cases. The example particle size-distribution from Table 2.3 and
Fg. 2.12 obtained an r = 0.982 in the probability plot (Fig. 2.16). Thismeansthat in
about 70 out of 100 cases, the null hypothesis of normality is not rejected and near-
normality may be correctly assumed for that particle size-distribution.

Table 2.6: Ciritical values for a coefficient of correlation between ordered residuals g and expected
residual values under normality E; when the distribution of error termsis normal (excerpt of table from:
Looney and Gulledge 1985).

Number of Number of
size classes Level of significance a size classes Level of significance a
k 090 075 050 010 0.05 k 090 075 050 010 0.05
5 0988 0977 0960 0.903 0.880 16 0.989 0.985 0.978 0.953 0.941
6 098 0977 0962 0.910 0.888 17 0.990 0.986 0.979 0.954 0.944
7 098 0978 0964 0.918 0.898 18 0.990 0.986 0.979 0.957 0.946
8 0986 0978 0966 0.924 0.906 19 0.990 0.987 0.980 0.958 0.949
9 098 0980 0968 0.930 0.912 20 0991 0987 0981 0.960 0.951
10 0.987 0.980 0.970 0.934 0.918 25 0992 0989 0984 0.966 0.959
11 0987 0.981 0.972 0.938 0.923 30 0993 0.990 0.986 0.971 0.964
12 0988 0.982 0.973 0.942 0.928 40 0994 0.992 0.989 0.977 0.972
13 0988 0.983 0.974 0.945 0.932 50 0.995 0.993 0.990 0.981 0.977
14 0989 0.984 0.976 0.948 0.935 75 0996 0995 0.993 0.987 0.984
15 0989 0.984 0.977 0.951 0.939 100 0.997 0.996 0.993 0.989 0.987

D’ Agostino test for normality and lognormality

One of the standard tests for normality and lognormality that is applicable to sample sizes
between 50 and 1,000 isthe D’ Agostino test. The D’ Agostino test compares the value of
the test statistic Y with atable value to accept or reject the null hypothesisthat a
distribution isnormal. If data used in thistest are log-transformed, the Y statistic can
likewise be used to test for lognormality. Gilbert (1987) prefersthistest over the
Kolmogorov-Smirnov test because the latter isinvalid if the parameters of the
hypothesized distribution are estimated from the data set itself.

The D’ Agostino test ranks the data from smallest to largest. Hence, the test can be used

for pebble-count data. In the ranked list, the smallest particle sizeis listed as many times
as the number of particlesfound in that size class, then the next larger size classislisted
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as many times as the number of particlesfound in that size class, and soon. The D
statistic is computed from

i(i -05(n+1)) @
i=1

D= nz T s (228)

and should be determined to the 5" decimal. sisthe standard deviation and is computed

from:
_ |1
S= n-1 i

where ¢, isthe distribution mean, and i is the ranked order of the data, starting with 1 for
the smallest datum, and reaching n for the largest datum. The test statistic Y is computed
from:

(@i - om)” (2.29)

1

M-

_ D -0.28209479
0.02998598 A/n

(2.30)

The null hypothesis of anormal distribution isrejected at the significance level of a =
0.05if the test statistic Yislessthan Y, or greater than Y,_,». The quantilesfor a/2 =
0.025, and 1-a/2 = 0.975 are listed for various sample sizesin Table 2.7. The easiest way
to obtain quantiles for sample sizes not listed is by interpolation between listed sample
sizes. If higher accuracy isrequired, the quantilesfor unlisted n can be predicted from a
regression analysis of the quantilesfor a/2 and 1-a/2 versus n.

Table 2.7: Quantiles of D’ Agostino’s test for normality for a/2 = 0.025, and 1-a/2 = 0.975 for 100 < n
<500 (abbreviated from Table A8 in Gilbert 1987, p. 262).

n 100 150 200 250 300 350 400 450 500

a2 -2552 -2452 -2391 -2348 -2316 -2291 -2270 -2.253 -2.239
1-a/2 1.303 1.423 1.496 1.545 1.528 1.610 1.633 1.652 1.668
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2.1.5 Computation of particle distribution parameters

Particle-size distributions are commonly characterized by four distribution parameters:

* mean, which characterizes the central part of the distribution;

» sorting (i.e. standard deviation), or width of the distribution, which is the range of
particle sizes within which a preset percentage of all data are contained,

» skewness, which isameasure of deviation from symmetry of a distribution; and

» kurtosis, which isthe flatness or peakedness of the distribution.

Particle distribution-parameters were designed during the 1930’sto 1950's. Apart from
serving as a means for general sediment classification, ratios of various particle
distribution-parameters (e.g., mean versus sorting, or sorting versus skewness) can be
used to distinguish between sediments of different origins, transport modes, and the
duration or distance of transport.

The literature offers a variety of possibilities for computing distribution parameters.
Distribution parameters can be computed using percentiles (graphic approaches), or the
percentage frequency of a distribution (frequency approaches), and both methods can be
applied to particle sizesin mm (geometric approaches), or to particle sizesin gunits
(arithmetic approaches) (Fig. 2.17). The particulars of the data sets (especially the
accuracy of the distribution tails), the number of data sets to be analyzed, and the study
objective play arolein the decision of which method should be used.

Graphic approach Freq. distribution
(percentile method) approach,
(moment method)

N /N

Geometric Arithmetic For particle For particle
approaches approaches sizesin @ Sizesin
(for particle sizes (for particle sizes log(D)
in mm) in @

Fig. 2.17: Methods for computing particle-size distribution parameters and their applicability to particle size
classes D inmmor ¢-units

Some of the methods provide identical or very similar results when applied to the same

data set, whereas results from other methods may be somewhat different or not even
comparable. Thus, some methods can be used interchangeably, but others cannot.
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An overview of the most common approaches to compute the four distribution
parameters mean, sorting, skewness, and kurtosisis provided in Table 2.8. General
differences between approaches are explained in the first part of this section. Possible
methods used to compute distribution parameters are discussed in the remainder of this
section. Finally, all distribution parameters are computed for the example particle-size
distribution shown in Table 2.3 and Fig. 2.12, and results of these computations are
compared in Table 2.14.

2.1.5.1 Graphic, or percentile methods (geometric and arithmetic)

Graphic methods compute distribution parameters from a few percentile values that are
obtained from a cumulative particle-size frequency distribution. Traditionally, graphic
methods required a plotted cumulative frequency distribution, preferably on probability
paper, so that the percentiles used for the analysis could be easily read from the graph.
Thisis till aviable, though tedious, procedure. For a computerized analysis, percentile
values can be obtained from linear interpolation between the percentile values recorded
for adjacent ¢-size classes on the cumulative frequency distribution, or from linear
interpolation between log-transformed mm sizes (Section 2.1.4.2). Thisinterpolation
requires some time-consuming cell-by-cell computation in spreadsheet programs, so that
obtaining the percentile values continues to remain the most laborious part of computing
distribution parameters by graphic methods. Once the necessary percentile values are
interpolated, distribution parameters can be easily computed from a variety of equations.
Equations for the same distribution parameter can employ a different range and number
of percentiles, and use percentiles either in @-units or in mm.

Percentilesin g-unitsfor arithmetic approaches and mm-units for geometric
approaches

The four distribution parameters: mean, sorting, skewness, and kurtosis, have the most
informative value when applied to distributions that are near-normal, or almost Gaussian
distributed (see Section 2.1.4.3 for analysis of distribution types). Particle-size
distributionsin gravel-bed rivers tend to resemble normal distributions when computed in
@-units. The degree of normality reached is usually sufficient to compute distribution
parameters, although normality may not be obtained in a strict statistical sense. Thus,
arithmetic computations of particle-size distribution parameters (Folk and Ward 1957;
Inman 1952) are always performed in g-units. A geometric approach isrequired if
computations are preferred in mm-units, because geometric approaches compensate for
the absent log transformation of particle sizes. Thus, thefirst step in a particle-
distribution analysisisto evaluate whether the sample distribution approaches a normal,
or alognormal distribution. If the distribution is normal in ¢-units (or lognormal in mm),
agraphic arithmetic approach in @-units, the moment method in @-units, or ageometric
approach in mm should be used. If the distribution is normal in mm, which islesslikely,
mm should be used in a graphic arithmetic approach or the moment method (Fig. 2.17).
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The difference between arithmetic and geometric approaches can best be explained for the parameter
“mean”. An arithmetic progression is a series of numbers in which the difference between each
number and its predecessor isidentical: for example, the series 2, 4, 6, 8, or the series 9, 7.5, 6, 4.5.
The arithmetic mean is the sum of n termsdivided by n. In a geometric progression, each term
differs from its predecessor by the same factor (or multiplier) (Table 2.9), for example 2, 4, 8, 16 or -
8, -2,-0.5,-0.125. The geometric mean is defined as the central term of an odd number of
consecutive termsin a geometric progression. If the number of termsis even, or when the geometric
progression is not known, the geometric mean is computed from the nth root of the product of n
numbers (Table 2.9). An alternative to the nth root approach is the logarithmic approach, which

Table 2.9: Examples of geometric progressions with a central term, and computation of the geometric mean using the nth
root, and the logarithmic approach.

Geometric Ratio tz: t= Geometric_mean
progression t: t; =const.  Central term  nth root approach Logarithmic approach
3 log(4- 6- 9
4,6,9 15 6 \y4- 6- 9=6 0 3 = 0.78=log 6
1 1
21111 0.5 1 521 11 1—05 o b 2 4 é)— 0.30=1log 0.5
248 2 "t 2487 5 = 0=l h
3 log(3- 3*- 3
3,33 3 3? 3. 3.3 =09 = 3 = 0.95=log 9

does not require computing the nth root. Thisis an advantage when a calculator does not feature the
y* command. The numerical result of the geometric mean from the logarithmic approach is identical
to the log of the geometric mean computed by the nth root approach.

Graphic approaches to particle distribution-parameters compute the mean from two or three
percentiles. If the arithmetic mean from percentilesin @-unitsis transformed into mm-units, the
result isidentical to the geometric mean from the nth-root approach computed from the same
percentiles in mm, and to the antilog of the mean from the geometric log approach.

Number and range of percentiles used

To compute the four distribution parameters, Inman (1952), and Folk and Ward (1957) used five
different percentilesin g-units: g (the median), @ and @4 (the percentiles at the points of curvature
of a Gaussian distribution, approximately the data range of + one standard deviation around the
mean), and ¢ and @s (two percentiles that characterize the tails of the distribution, the data range of
approximately + two standard deviations around
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the median). In Gaussian distributions, the particle sizes of those five percentiles are
almost evenly-spaced over the particle-size range. Geometric approaches are commonly
based on four percentiles: D15 and Dg, (the percentiles at the point of curvature), and Dos
and D5 (the two quartiles). Trask’s (1932) mixed approach uses only the three quartiles
D25, D50, and D75.

Statistical analyses are more powerful and informative when data from the entire particle-
size range are included, but this holds true only if the accuracy of datais sufficiently high
over the entire datarange. Distribution tails are prone to sampling errorsin samples from
gravel-bed rivers. Small sample sizesin which the presence of alarge particle accounts
for 5 - 10% or more of the total sample weight cause errors at the coarse end. Operator
bias against fines in pebble counts, or disregard for the spatial variability of fineswithin
the sampling area, cause uncertainty at the fine end. If there is considerable doubt
regarding the accuracy of the distribution tails, peripheral percentiles from the distribution
tails should be excluded from the analysis. If the study focuses on the central tendency,
the analysis should be limited to the central part of the distribution.

The accuracy of distribution parametersisincreased when many percentiles are used for
analysis. Upto 7 or 10 percentiles might be used, but eventually there is a trade off
between the effort required for interpolating percentiles and the information gained by
using alarge number of percentiles. A set of 3 to 5 percentile values usually suffices
when computing distribution parameters with the goal of describing and identifying a
particle size-distribution. When the study objective is to detect minuscule differences
between samples, more than 5 percentiles might have to be used. However, the most
important factor for the ability of detecting small differences between samplesisthe
necessity of obtaining a sufficiently large sample size (Section 5).

2.1.5.2 Moment, or frequency distribution method

The frequency distribution method, also called the moment method, uses the absol ute or
percentage frequency of each particle size-class to compute the four moments that are
related to the four distribution parameters. Computations are usually performed in ¢
units, because particle size-distributions tend to resemble a Gaussian distribution when
computed in ¢, but using log-transformed particle-size classesin mm for the analysis (i.e.,
log D) would work aswell.

The moment method requires that the percentage or absolute frequency for all particle-
size classesis known, including the fine and the coarse tail, and that size classes are
equidistant (e.g., 0.5 gsize classes). An unsieved remainder, such as the contents of the
pan, or the particle-size category “smaller than 2 mm” cannot be included in the analysis
unlessthis sediment is further differentiated into discrete sieve classes. This measure
truncates a sample at the fine end. Similarly, a sample may have to be truncated at the
upper end if the percent frequency contributed by one or two particlesin the largest size
classisunduly high. Truncation, however, alters the shape of the distribution and thusits
percentiles
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and all summary statistics computed from it. Truncated samples can only be compared
among each other if all samples have been truncated at the same upper and lower size
classes.

The advantage of the moment method is that the computations of the distribution
parameters can be completely computerized once the data are entered. Thisisa
convenient attribute when dealing with alarge number of data sets.

Graphic approaches versus moment method

Graphic approaches are mathematically easy to compute once the percentiles have been
determined. However, determining the percentiles for alarger number of samplesisa
rather tedious and time consuming effort when applying graphic methods to alarge
number of samples. Graphic methods have the advantage of being both standardized and
flexible. The Folk and Ward (1957) approach in g-units offers arating scheme that can be
used to classify samples, for example as *poorly” or “well” sorted, or “moderately” or
“extremely skewed”. Hexibility, by contrast, results from the user’s choice of either
focusing on central percentiles or extending the analysis to peripheral ones, depending on
the accuracy of the distribution tails or the study objective. Graphic approaches can
further be modified with respect to the number of percentiles used, and even by altering
the computation itself. However, modifications might provide numerical valuesthat differ
from the ones obtained by “standard” approaches. If thisisthe case, classifications of the
degree of sorting or skewness, such as those introduced by Folk and Ward (1957), may not
be applicable.

The moment method is most suitable for complete and reliable particle-size frequency
distributions because, apart from truncation, the user can determine only the width of
particle size-classes (e.g., 0.25, 0.5, or 1 ¢@-units). Folk (1966) showed that the moment
method overpredicts values of standard deviation if the sediment isonly sieved in afew
large sieve classes, and the weight midpoint is not equal to the center of classsieve size
D.. To avoid this problem, moment methods should only be applied to sediment sieved in
sufficiently small increments. Particle-size classes of 0.5 ¢ should be appropriate for
gravel-bed streams with particles ranging between sand and cobbles.

The selection of sieve classes usually needs to be made before sampling, because sieving
in smaller size classesrequires alarger sample size. Disadvantages of the moment
method are the lack of standardized numerical values that distinguish between “poorly”
and “moderately” sorted particle size-distributions, or between the degrees of skewness.
The moment method is mathematically less straightforward than graphic methods,
particularly for the two higher moments representing the parameters skewness and
kurtosis. The power expressions of the moment equations need to be solved before they
can be applied to grouped data, and the solutions become lengthy for the third and the
fourth moment. However, once the solved equations are entered into spreadsheets,
computations can be applied to an unlimited number of data sets. The computational
rigidity, and the suitability for complete computer processing make the moment method
most suitable for analyzing large numbers of samples, that have accurate tails or that can
all be truncated at the same upper and lower size classes.
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2.1.5.3 Central tendency (mode, median, and mean)

The central tendency of a particle-size distribution can be characterized by its mode, its
median, and its mean.

Mode

The mode is the center of the size class that contains most of the sediment, either in terms
of weight frequency or number frequency. The mode can be computed in terms of mm
sizesor in gunits. The particle-size distribution shown in Table 2.3 and Fg. 2.12 hasits
mode in the center of the size class 45.3 to 64 mm, or -5.5t0-6.0 @ An analysis of
modality determines the number of modesin a distribution. Distributions can be
unimodal (one mode), bimodal (two modes), or polymodal (several modes). An
irregularity of afrequency distribution in which two non-contiguous size classes have
higher weight frequencies than their two neighbors, such as the size classes 45.3 and 22.6
mm in Table 2.3 and Fig. 2.12, does not qualify for bimodality. Bimodality and its
computation is explained in Section 2.1.5.9.

Median

The median is the center of the cumulative frequency distribution. The median can be
computed in terms of mm sizes as D or in terms of @-unitsas ¢ and is probably the
most frequently used parameter in the description of gravel-bed rivers. The distributionin
Table 2.3 hasa Dg of 32 mm, and a ¢ of -5.0.

Mean
The mean can be considered as the mathematical center of adata set. Means can be
computed by a variety of approaches.

Mode, median and mean are equal in symmetrical (unskewed), normally distributed data
sets, but not in skewed distributions which, however, are typical of fluvial gravel
sediment.

Graphic arithmetic means

The arithmetic mean is the nth fraction of a sum of n numbers. The graphic arithmetic
mean is usually computed from two or three percentilesin g-units that have equal
distances from the median. It isassumed that particle sizes approximate a normal or
Gaussian distribution when expressed in g-units (Section 2.1.2.2). Computationsin ¢
units are usually carried out to two decimals.

Inman (1952) computes the mean from the 16™ and the 84™ percentile in @-units, both of
which are equidistant to the median in anormal distribution.
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+
g = P07 (2.31)

Trask (1932) used the two quartile values.

+
Ot = 5"25—2% (2.32)

Cumulative distribution curves from unrepresentatively small samples are often jagged
and only little accuracy can be placed upon a particular percentile. It isanticipated that
these errorstend to cancel each other out if the graphic mean is computed from several
percentiles. Thus, Folk and Ward (1957) added the @, as athird datum to the
computation.

+ +
%YF&W:(Pm (P?fo Psa (2.33)

Briggs (1977, cited after Gordon et al. 1992) extended the computation evenly over the
entire data range and used nine percentile values (see also Folk 1966).

+ + +...+
s = P10+ P 9(P30 P (2.34)

At some point, there is a trade-off between increased accuracy due to alarge number of
percentiles used for the computations and the computational effort of determining
percentiles. The moment method is usually more practical if the entire data range isto be
included in the analysis.

Computations of @), Pmrews and @ are identical for distributions that are symmetrical
and truly normal in terms of g-units. In particle-size distributions skewed towards a tail of
fine particles, typical of gravel-bed rivers, the particle size of ¢,g islarger than the
particle size of @, rewWhichislarger than the particle size of @p,.

Graphic geometric mean, square root approach

The geometric mean is the nth root of the product of n numbers. For particle-size
distributions, the geometric mean is commonly computed from the square root of two
percentilesin mm (Kondolf and Wolman 1993; Y ang 1996).
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ng,sq = \[ D34 . D16 (235)

Graphic geometric mean, cube root approach
Alternatively, the cube root of three percentiles can be taken (Kondolf and Wolman 1993)

ng,cu = (D84 ) D50 ' Dl(i)]j3 (2.36)

More percentiles could be used if necessary for the study objective. When applied to the
same data set, the graphic geometric mean computed in mm from the square or cube root
approach is equivalent to the arithmetic mean computed in g-units, transformed into mm
(Eq. 2.5).

Graphic geometric mean, log approach
The graphic geometric mean can also be computed from the mathematically more smple
log approach. Thisisan advantage should a calculator not feature the y* command.

09 (Dis - D
Dyrcy = 107 [129-B15 Lo (237)

This geometric mean is equivalent to the geometric mean computed with the square root
approach in Eqg. 2.35.

Geometric mean from a frequency distribution (power approach)

A geometric mean can also be computed from a particle-size frequency-distribution
instead of percentiles. This approach ensures that the mean represents the entire particle-
size distribution and does not rely only on afew percentiles. Another advantage is that
this computation can be fully computerized and does not require the time consuming task
of determining percentiles. Platts et al. (1983) suggest the following equation:

ng,pw = (Dclm%1 ' Dch%2 BT DckmO/QK):U:LOO (238)

where D¢, to Dy are the centers of the particle-size classes 1 to k, k is the number of size
classes, and my; isthe percentage particle weight for the ith size class. The computations
can likewise be performed for number frequencies, in which case my; is substituted by no.
Dgmpw Yi€lds the same result as the mm-transformed mean obtained from the 1st moment
method based on @-units.
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The first moment (arithmetic mean from a frequency distribution)
Moment methods use all particle size-classes present and compute the arithmetic mean
(nirq OF a frequency distributions from

1 n
%,frq:m Z(@i - m) (2.39)

where @ isthe center of the ith size classin g-units (Section 2.1.5.2), m is the weight of
particlesretained on the ith size class sieve, and my, is the total weight of particles per
sample. For computation using number frequencies, m is substituted by n;, the number of
particles per size class, and my; by n, the total number of particles per sample. For
percentage frequency distributions, the equation becomes

1 k
Wnira =100 Z(fpci © M) (2.40)

where my; is the percentage frequency by weight for particles retained on the ith size
class, and k is the number of particle size-classesin the sample. For computations based
on frequency by number, my; is substituted by no.

Mean in mm from a log frequency distribution (log frequency approach)

In analogy to the arithmetic mean computed from the first moment, the mean particle
sizein mm D, can aso be computed from the antilog of 1og-transformed particle size
classesin mm (log D) (Gordon et al. 1992)

1 k
Driogra = 10 ﬁ% ;“Og(Dci) : I'Tb/oi}ﬁ (2.41)

where Dy isthe center of class of the size classes 1 to k, and my; is the percentage by
weight for theith size class. Alternatively, ny;, the percent frequency by number can be
used instead of my,;. Results of this computation are equal to the power approach in Eq.
2.38 and equal to the arithmetic mean computed by the 1st moment in equation 2.40.

2.1.5.4 Standard deviation and sorting

The standard deviation (o) expresses the spread or dispersion within normally distributed
data sets. Plus and minus one standard deviation (o = £1) comprises the central part of
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the cumulative frequency distribution that contains 68.26% of all data. Thus, one
standard deviation encompasses all datawithin the interval of the 16M percentile (pi) and
the 50™ percentile (psp) because

68.26%
2

P16 = 50% - =50% - 34.13% = 15.86% = 16% (2.42)

plus all the data between the 50" and the 84™ percentile (pss) because

26%
Peas = 50% + 68 26 ® = 50% + 34.13% = 84.13% = 84% (2.43)

Thus, the interval between the 84" and 16™ percentile (pgs and pyg) indicates the range of
the mode u +1 standard deviation ((u -10) + (1 +10)). A distribution has a standard
deviation of o= £1if

O=Psp—Pisgs =1 and O0=pgs1z—Psp=1 (2.44)

In symmetrical distributions, Eq. 2.44 is equal to

o = %@ -1 (2.443)

Plus and minus two standard deviations (£20) encompass 95.44% of al data, i.e., the data
between the 97.72th and 2.28th percentile. A distribution has a standard deviation of o=
+2if

o0 = 997.72%2' P2.28% _ 2 (2.45)

The computation of standard deviation can become somewhat complicated for grouped
data (see computation of the second moment, Egs. 2.56 to 2.58). Therefore,

sedimentol ogists analyze the spread or dispersion of a distribution from a sorting
coefficient that is are computed from a few percentiles of the distribution. The terms
sorting coefficient and standard deviation are synonymous for normal distributions, and
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their numerical valueisidentical if the distribution istruly normal. The numerical values
of sorting coefficients computed for particle-size distributionsin @units have been
standardized to compare the spread or dispersion between distributions.

The sorting of a particle-size distribution can be computed in several ways. Some
approaches yield identical values, some obtain identity after a transformation, while
others are non-comparable. This makesit necessary to analyze the relation between
different sorting coefficients.

Graphic arithmetic sorting coefficients

Particle-size distributions of fluvial sediment tend to roughly approximate normal
distributions when particle sizes are expressed in ¢-sizes. In accordanceto Eq. 2.44a,
Inman’s (1952) sorting coefficient 5 uses almost the same percentile difference, but 5 is
always positive since it is the absol ute difference, whereas the standard deviation is
defined astheinterval of +saround the mean.

5 = 84'2 16% (2.46)

As Inman’ s sorting coefficient uses two percentiles only, particle-size distributions that
are quite different can have the same sorting coefficient if only those two percentiles are
identical. Folk and Ward (1957) therefore include a broader range of the cumulative size-
distribution curve into the sorting analysis and compute sorting as

seay = 00 B (247)

Folk and Ward (1957) classify the degree of sorting of fluvial sediment into 7 categories
(Table 2.10). A chart for visual estimation of sorting isprovided in Fig. 2.18.

The two sorting coefficients 5 and se¢\w have identical results when applied to
symmetrical normal distributions, although equality may not be present if the distribution
isnot strictly normal or somewhat skewed. However, fluvial gravel deposits that
approach normal distributionsin @-units and are only dlightly asymmetrical, and which
are "poorly" sorted in terms of Folk and Ward (1957), have an Inman (1952) sorting
coefficient around 1.5 as well.
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Table 2.10: Classification of the degree of
sorting (from Folk and Ward 1957)

Sorting Characterization
Coefficient
> 4 extremely poor
2 - 4 very poor
1 2 poor
071 - 1 moderate
050 - 071 moderately well
035 - 05 well
<0.35 very well

00 LO @ 2250
008%08 QOQO oD
OQQQQQQQ QQQC%Q o@o

Srew = 0.35 Srew = 0.50

Qo o@ Q (e QCZ
QCQ>Q Oo OOOOQQ

OOQO C>Cc>> N QO

Srew=1.00 Srew = 200

Fig. 2.18: A chart for visua estimation of sediment sorting for the same D5, (Redrawn from Pettijohn et al.
(1972), by permission of Springer Verlag).

@-based sorting coefficients for fluvial gravel typically range between about 0.5 and 2.
Fig. 2.19 shows three example particle-size distributions with a common Dsgy of 32 mm,
but with three different sorting coefficientsof s= 0.5, 1.0, and 1.5. Particle sizesin
uncoupled gravel-bed streams might obtain a sorting coefficient of about 0.5 after along
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fluvial transport. Mountain gravel-bed streams with grain sizes ranging from sand to
boulders more typically have sorting coefficients in the range of 1.5 to 2.

Particle Size (@-units)

o 05 -1-15 -2 -25 -3 35 4 45 5 -55 6 65 -7 -75 -8 -85 -9 -95 -10

Cumulative Frequency (Percent Finer)

1 2 4 8 16 32 64 128 256 512 1024
14 28 56 113 226 45 90 180 362 724
Particle Size (mm)

Fig. 2.19: Three particle-size distributions with a common Ds, of 32 mm, but standard deviations of o = 0.5,
1.0, and 1.5. For the curve with g = 0.5, the range of one standard deviation between D¢ and Dg, is
indicated by the lightest gray shade, for the curves with o =1, and o =1.5, the ranges of one standard
deviation are indicated by the medium, and the darkest gray shade, respectively.

Graphic geometric sorting coefficients, log approach

Analogous to the standard deviation of particle sizesin @-unitsin anormal distribution
where 2s = @4 — @6, and S= (@4 — @i6)/2, the standard deviation of alognormal
distribution for particle sizesin mm can be expressed as (Simons and Senttirk 1992)

log %ﬁ:ﬁ
2

_logDgs—logDys

log s > = (2.48)
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The geometric sorting coefficient sy04 Can be computed for percentilesin mm by taking
the antilog of Eq. 2.48 which yields the same numerical results as the square root
expression in Eq. 2.53.

0g(Ds.) - 10g(D1e) %'Og%%
sg,loglzlofﬁ e 5 J “’ﬁ: 100 0———5 (2.49)

Since the term in parenthesis in the first equation is the log of the arithmetic Inman
sorting coefficient 5 =(¢&4 - ¢r6)/2, results computed by sy1051 and s are convertible. By
analogy to Egs. 2.4 and 2.3,

Sylog1 = 2> (2.50)
and

lo logl

S= " log) (2.51)

The log approach for a geometric sorting coefficient can include the Dsy value, so that
Eq. 2.49 can be rewritten as:

% a4, Dso
_ Dso D
Spiogz = 10°og 5= — 1 (252)

Eq. 2.49 and Eq. 2.52 yield identical resultsif distributions are symmetrical. When
applied to the distribution in Table 2.3, Eq. 2.49 provides a numerical value of 3.84
which issimilar but not identical to the numerical value of 3.88 provided by Eq. 2.52 for
the same data set. Eq. 2.52 can be smplified by eliminating the log and the antilog. This
measure yields the gradation coefficient.

Gradation coefficient
The gradation coefficient isaterm used in engineering. It computes the spread of a
distribution from percentilesin mm (Simons and Sentiirk 1992; Julien 1995; Y ang 1996)
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84 Dsoﬁ
% + P50
Dso  Dis

S (253)

Eq. 2.53 may be seen as a simplified notation of the log approach in Eq. 2.52, yielding the
same result. Note the conceptual difference between the terms “sorting” and “ gradation”
— sedimentol ogists refer to a sediment that spreads over a wide size range as poorly
sorted, while engineersrefer to a poorly sorted sediment aswell graded, i.e., it hasawide
range of particle sizesthat is sufficient for a given application.

Graphic geometric sorting coefficients, square root approach

Instead of an antilog, the logarithmic expression logs = (logDg, — l0gD16)/2 in EQ. 2.48
can also be solved by a square root equation (Simons and Sentirk 1992; Julien 1995; and
Y ang 1996)

Sa="\/p2 254

Eq. 2.54 and 2.48 yield identical results. An equation of similar form but with different
percentiles was proposed by Trask (1932)

D

572\ pa (2.55)

Results of Egs. 2.54 and 2.55 are different because they are based on different percentiles.

Graphic geometric sorting coefficients computed from percentilesin mm are
dimensionless.

The second moment (arithmetic sorting from a frequency distribution)
The general form of the equation for the 2nd moment, i.e., the distribution variance, for
grouped (or binned) datais

=PI (256)
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where @ isthe center of classin @-units of ith size class, n; isthe number of particles
retained for the ith size class, k is the number of size classesin the sample, n isthe total
number of particles, and ¢, is the arithmetic mean of the distribution in g-units. Eq. 2.56
can likewise be applied to the weight of particlesfor the ith size class, in which case n; is
substituted by the weight of particlesin theith size classm. If Eq. 2.56 isapplied to
percent frequencies, n; or m; are substituted by ne; and my;, respectively, and my; or n are
set to 100%.

2

1 k
Strqg = 100-1 Z Nosi (G - @n)z (2.57)

For the actual computation of the sorting parameter, the quadratic expressionsin Eq. 2.56
or 2.57 need to be solved and rearranged, and the square root needs to be taken because

standard deviation is defined as the square root of variance (s = \/gz). Eg. 2.58 isthe
solution of Eq. 2.56. The solutionissimilar for Eq. 2.57 for which n; is substituted by
Noyis and n = 100.

@ E -
Z(n. @) ;(ni- @) -n- @

n-1 (2.58)

Conversion between standard deviation of the log-transformed and the original data

If Egs. 2.56 to 2.58 were applied to particle sizesin mm (exchange all symbols ¢for D in
Eq. 2.58 and compute as above), the resulting numerical value 41 has no resemblance
to the geometric graphic sorting computed for percentilesin mm (Egs. 2.49 and 2.52 —
2.54). However, it is possible to compute the graphic arithmetic standard deviation for
particle sizesin g-units s, from the s4rq (EQs. 2.56 to 2.58) using the following equation
(Church et al. 1987):

B 0 it g %0.5
Sp=C %n %BZ;“ +1EE (2.59)

Dgm is the geometric distribution mean, and ¢ = 1.4427 when log-transformations are
based on ¢@-units (e.g., equations by Inman), or ¢ = 0.4343 for transformations based on
the log,q of particle sizes, and ¢ = 1 for the In of particle sizes. Using the example
distribution in Table 2.3 and Fig. 2.12, the logarithmic standard deviation 544 COMmputed
for mm sizes using Eqs. 2.56 to 5.58 is 58.13 mm, the distribution mean Dy, (€.9., from
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the square root approach in Eq. 2.35) is27.2 mm. Eg. 2.59 computes a standard
deviation of s, = 1.89 which issimilar to the Inman sorting coefficient of s, = 1.94 (Eq.
2.31), but lower than the standard deviation computed from the second moment of s =
2.02 (Eg. 2.58). Equity of results requires atrue normal/lognormal distribution.

The graphic arithmetic sorting coefficients computed for particle sizesin ¢@-units (s or
Srew) Yields the same numerical value as the standard deviation S computed using
equation 2.56 to 2.58 if both distributions are truly normal, and both results are in units of
¢ Graphic arithmetic sorting coefficients and the standard deviation computed using
Egs. 2,56 to 2.58 produce similar numerical valuesif the particle-size distribution is not
truly normal.

2.1.5.5 Skewness

Normal distributions are symmetric around the mean and not skewed towards either side
of the distribution. Distributions with negative skewness are skewed towards the low end
tail of the distributions, whereas distributions with positive skewness are skewed towards
ahigh end tail (Fig. 2.20). The degree of skewness of a distribution can be seen asa
degree of deviation from normality.

mode mode mode
= median median median
= mean

mean

coarse fine coarse fine coarse fine

Symmetrical Positively skewed towards a Negatively skewed to towards a
tail of high or positive values tail of low or negative values
i.e., towards fine particles i.e., towards coarse particles

Fig. 2.20: Shape of symmetrical, positively and negatively skewed frequency distributions

When applied to particle-size distributions in g-units, in which the coarsest particles sizes
have the smallest numerical values (e.g., -7¢= 128 mm, -1¢= 2 mm, +2¢ = 0.25 mm),
the term skewnessis reversed: positive skewnessistowards atail of fine particles (high
@-values, and negative skewnessistowards atail of coarse particles (low @values).

Bed-material size distributionsin ¢g-unitsin mountain gravel-bed rivers are often skewed
towards atail of finer gravel and sand (positively skewed), and thus deviate from
symmetrical normal distributions. In positively skewed distributions, particle frequency
of the largest size classes comprise the bulk of the sample, while finer particles cover awide
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range of sizes, but the frequency per size classislow. Positive skewness of a sample can
also be the result of unrepresentative sampling in which a few large clasts comprise 30 to
50% of the total sample weight. When analyzing a particle-size distribution for
skewness, samples need to be representative such that the weight of the largest size class
does not constitute more than a small percentage of total weight. Church et al. (1987)
suggested that the maximum allowable weight of the largest size class was 0.1% of the
total weight for Dyax < 32 mm, 1% for Dpax < 64 mm, and 5% for Dy < 128 mm
(Section 5.4.1.1).

Particle-size distributions in @-units that are mostly comprised of sand and fine gravel
with afew large gravel particles are skewed towards a coarse tail. Such distributions are
negatively skewed.

Skewness may be computed from various modifications of the ratio between distribution
mean and sorting. Computations may focus on the central part of the distribution, or
include the distribution tailsto various degrees. The user should select the computational
method that suits the data situation and provides the clearest answer to the study
objective. If, for example, little confidence can be placed into the tails of adistribution,
they should not be included in the analysis because they might distort the result.
However, omitting the tails excludes information that under ideal circumstances should
have been included.

Graphic arithmetic skewness

Graphic arithmetic skewness is computed from several percentilesin @-units. The
percentiles need to refer to the percent coarser cumulative frequency distribution if
positive skewness isto yield positive skewness values and negative skewness negative
values. However, the percent finer isthe more commonly used form of a cumulative
frequency distribution for bed-material samples. Thus, if graphic arithmetic skewnessis
computed from the percent finer distribution, skewness values need to be multiplied by -1
to obtain the correct sign.

The computed value for skewnessis sensitive to the range of data used for its
computation. Inman (1952) computes skewness as the difference between mean and
median divided by sorting.

o B o
- 2 -
a1 = G- o _ _ _Pet (254 2¢0 (2.60)
Oy Ba - Gie s - Qs
2

In order to account for skewness in the distribution tails, Inman (1952) suggested a
second computation in which the data range includes the 95" and 5" percentiles.
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_ Bt @s-(22 @)
Ska,|2 - 2. (%4 _ §0.|.6) (26061)

Folk and Ward (1957) combined both of Inman’s equations and slightly modified the
second one.

Pt @u-(2- @) Bt @s-(2- @)
Sarw = (-0 T 2 (@ @) (261)

Warren (1974) simplified the Folk and Ward equation for skewness into aform that
yieldsanumerical identical result, but is easier to compute.

_ B0 Po- B (2.61a)
Ba-Pe Gs-G

SKa, w

The numerical values of skewness computed with Egs. 2.60 or 2.60a are not identical to
those from EqQ. 2.61 and 2.61a, but all three equationsyield O for symmetrical
distributions, and -1 and +1 for very negatively and very positively skewed distributions.
The Folk and Ward (1957) and the Warren (1974) skewness coefficients can be verbally
classified into the following categories (Table 2.11).

Table 2.11: Classification of skewness values (from: Folk and Ward 1957)

Skewness Description in terms of:

value @-units Relative particle size
-0.3to-1 very negatively skewed very skewed towards the fine side
-0.1t0-0.3 negatively skewed skewed towards the fine side
-0.1to 0.1 nearly symmetrical nearly symmetrical
0.1to 0.3 positively skewed skewed towards the coarse side
03to 1 very positively skewed very skewed towards the coarse side

Gordon et al. (1992) suggest a computation with a dightly smaller data range, which may
be useful when the tails of the distribution are unreliable. Resultsfrom Eq. 2.62 and Egs.
2.61 and 2.61a are not identical.
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The quartile skewness coefficient sk quart USeS only the central 50 percent of the data and
completely neglects the distribution tails.

_(@r5-@0) - (o - @)
Sagart =" (263)

Trask (1932) limits his equation to the central 50 percent as well, but uses mm units.

ka1 = —z—DZSD' 2 (2.64)
50

Geometric skewness from the square root approach (Fredle I ndex)

Aswith arithmetic skewness (Egs. 2.60 — 2.63), geometric skewnessis the ratio of the
geometric mean to geometric sorting. Recall that the geometric mean and geometric
sorting can be computed in a variety of ways. A simple expression for geometric
skewnessis

_ [Dgs- Dss
F1 — D
D 75

5

g = Fredle index (2.65)
O
O Dx O

which isalso an expression for the Fredle index that is used by fishery biologiststo relate

permeability and porosity of spawning gravel (Lotspeich and Everest 1981).

Geometric skewness from frequency distributions and percentiles
Platts et al. (1983) compute the Fredle index from:

m% m% m%, /100
_(Dcl o Dc2 02---Dck 0K)

@
25

(2.66)
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The numerator of Eq. 2.66 isidentical to the geometric mean computed from frequency
distributions (power approach, Eq. 2.38). D¢, to D are the midpoint diameters of
particles retained on the kth sieve class, and my to my are the percentage weight of
particles retained on the kth sieve class. Rice (1995) uses the square root of the
denominator, which isthe Trask (1932) sorting coefficient (Eg. 2.55).

D™ . D™ [ mkV100
,F3:( cl c2 D75 ck ) (2.67)
\/ Dzs

Equations 2.65 and 2.67 yield amost identical results. The Fredle index can only be
compared between samplesif all size distributions are truncated at acommon large
particle size, such as at 64 mm (Rice 1995), because the value of thisindex is affected by
the truncation point.

A graphic logarithmic approach to compute skewnessis not available. But in analogy to
graphic logarithmic mean and sorting, a graphic logarithmic skewness could theoretically
be computed from the ratio of mean and sorting

I Dy D

The third moment (arithmetic skewness from frequency distributions)
The general form of the equation for the 3rd moment for grouped (binned) datais

Z m (@ - (ﬁn)3
g =" p (2.69)

Myt -

where @ isthe center of theith class, @, is the distribution mean, k is the number of
classes, m isthe particle weight in the ith class, my; is the total weight of particles, and o
isthe distribution sorting as computed from the square root of the 2nd moment (see
Section 2.1.5.4). Eq. 2.69 needsto be solved before it can be applied to grouped data.
Gordon et al. (1992) provide the following solution
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Egs. 2.69 and 2.70 can be applied to number-frequencies of particlesaswell. Inthis
case, m is substituted by n;, the number of particles per size class, and my; by n, the total
number of particles per sample. Egs. 2.69 and 2.70 can also be applied to percent
frequencies. Inthiscase, m and n; are substituted by my;, and my;, the percentage
particle weight and number for the ith size class, and m; and n are set to 100.

Skewness values computed using the moment method produce positive values for
positively skewed distributions, and negative values for negative distributions. However,
skewness val ues from the moment method are not bound to the +1 to -1 interval asisthe
graphic arithmetic skewness, but may reach values of £3 or +4 or more.

2.1.5.6 Kurtosis

Kurtosis denotes the peakedness or flathess of a distribution in comparison to a normal
distribution. Thismeasure isonly infrequently used to characterize particle-size
distributionsin gravel-bed rivers.

Graphic arithmetic kurtosis
For particle-size distributionsin @-units, Folk and Ward (1957) propose to compute
kurtosis using the tails and the quartiles of the distribution.

ku - @s - Ps
aF&W ™ 2.44- (@rs- @s)

(2.71)

Kurtosis as computed by the Folk and Ward approach can be verbally classified into five
categories (Table 2.12)

Table 2.12: Classification of kurtosis values (from Folk and Ward 1957)

Value Classification Explanation

<0.67 very platykurtic very flat frequency distribution
0.67-0.90 platykurtic flat
0.90-1.11 mesokurtic not especially peaked, normal
1.11-1.50 leptokurtic highly peaked

> 1.50 very leptokurtic very highly peaked
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The Inman (1952) equation is also based on particle sizesin g-units and focuses on the
tails of the distribution

05 (s~ @) - 57

(s~ Bo
2

kua,l = (2.72)

When original untransformed particle sizesin mm are used, kurtosis can be computed
from the Trask (1932) equation

D75 - D25

Klatt =75 Doy - Do) (2.73)

Graphic geometric kurtosis

Graphic approaches to compute kurtosis are not available. If kurtosisisregarded asthe
ratio of two sorting coefficients, kurtosis, in analogy to the square root approach, could
hypothetically be computed from

_ .. |D1e/Dga
kug,sq = D75/D25 (274)

Another theoretical computation of kurtosisis analogous to the logarithmic approach

_ |Og (D15/D84)

Klglog = log (D75/D2s) (279

The fourth moment (arithmetic kurtosis) from frequency distributions)
Kurtosis can also be computed as the fourth moment kusq. The general form of the
equation is

K
Z m (¢ - @)
kufrq — izt p— 04 (276)
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where @ isthe center of theith class, @, isthe distribution mean, k is the number of
classes, m isthe absolute frequency of particle weights or numbersin theith class, my is
the total weight of particles, and o isthe distribution sorting as computed from the square
root of the 2nd moment (see Section 2.1.5.4). Eq. 2.76 can likewise be used for number
frequencies(m — n;; mg — N), or for percentage frequencies (M — My OF Nog; Mot —
100). Eq. 2.76 becomes rather extensive when solving the term m (g - @.)* and will not
be shown here since kurtosisis infrequently used to characterize a particle-size
distribution.

2.1.5.7 Comparison between methods

The four distribution parameters (mean, sorting, skewness and kurtosis) were computed
for the example particle-size distribution in Table 2.3 using several methods. The
distribution is poorly sorted and skewed towards large particles. The same methods and
equations as shown in Table 2.8 were applied. The results of those computations are
listed in Table 2.14 for a comparison of methods.

Mean

Arithmetic and geometric mean are both in units of length and mutually convertible.

The arithmetic mean of particle sizesin g-units, converted back into units of mm (Eg. 2.5
or 2.6), equals the geometric mean of particle sizesin mm, if the computations are based
on the same percentiles (Table 2.13). Similarly, geometric mean, computed in mm and
transformed to @-units using Eq. 2.3 or 2.4 equals the arithmetic mean computed for ¢
units,

All of the means are smaller than the Dsy or ¢, because the particle-size distribution is
skewed towards fine particles. Trask’s mean is considerably larger than the distribution
Ds in skewed distributions because skewed distributions have alarge mm-value of the
D75.

Sorting

Arithmetic sorting coefficients and the standard deviation computed from the moment
approach produce identical values for true normal and symmetrical distributions (Table
2.14). Arithmetic sorting coefficients computed from ¢-unit for the distribution in Table
2.3 differ somewhat between methods because the distribution is not truly normal, but all
values are generally within the same range. Hence, the Inman sorting 5 =1.94 (Eq. 2.46)
and the Folk and Ward sorting s-ew =1.70 (EQ. 2.47) are not identical. The difference
between s and the 2" moment Srq = 2.02 (Eq. 2.58) may be attributed to truncation of the
distribution at the fine end, because the unsieved remainder in the size class smaller than
2 mm was excluded in the moment method, but is included in the computation of
percentiles from the cumulative percentage frequency (i.e., the percent finer).
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Table 2.13: Equality between various geometric and arithmetic means when computed by different approaches for the same distribution
and expressed in the same units. Numbers in parenthesis indicate equation numbers in Section 2.

Geometric mean (computed in mm)
Geom. mean (computed in mm), expressed in @

Arithmetic mean (comp. in ¢), expressed in mm
Arithmetic mean (computed in ¢)

Square root appr. (35) \/Dis - Dgs = Inman appr. (31) uﬁ; A
Log appr. (37) 10"%’—%—20 D162' Des E = Inman appr. (31) *(Dl—(‘[é—eg 4

Cuberoot appr. (36) (D Dso- Dgg)™ Folk & Ward appr. (33) 2o %o® @

3
1 k
Power appr. (38) (Du™": D™?- ..o Dg™Y® = 1% moment (40) 700 2 (@ M)
i=1
0q k O
00 Z{IOg(Dci)' m%i}D < 1 k
Log freq. appr. (41) 10" "j=1 0 = 1" moment (40) 700 2( @i M)

i=1

Table 2.14: Results of distribution parameters computed with several methods for the example particle size-distribution in Table 2.3
(Small numbersin italics refer to equation numbers in Section 2).

(D5 =18, Di=7.1, Dyx=127, Dg=320, D;s=74.7, Dg=104.3, Dgs=195.8 mm;

@¢=-0.89, @s=-282, @s=-3.67, @u=-5.00, @s=-6.22, @4=-6.70, @s=-7.61).

Freg.distr.appr. Graphic (or percentile) approaches Freq.distr.appr.
Geometric approaches (for mm) Arithmetic approaches (in ¢)
power grad. sguare log cube Trask Inman Folk & Ward Moment
appr.  coeff. root appr. root (1932) (1952) (1957) Method*
Mean (¢) - - - - - - -4.76 -4.84 -4.74
(mm) 26.8 - 272 2712 287 437 27.2 28.7 26.8
Eq. 38 - 35 37 36 32 31 33 40
Sorting (@ - - - - - - 1.94 1.70 2.02
(mm) - - - - - - 3.84 3.25 4.06
) - 3.88 384 384 - 2.42 - - -
Eq. 53 54 49, 52 - 55 46 47 58
Skewness (-) 11.1 - 11.2 373 - 19.0 0.12 0.17 0.72
Eq. 66 - 65 68 - 64 60 61 70
Kurtosis(-) - - 1.6 15 - 0.2 0.7 11 -
Eq. - - 74 75 - 73 72 71 76

* Computations for the moment method excluded sediment passing the 2 mm sieve from the analysis.
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Geometric sorting coefficients computed from percentilesin mm are dimensionless and
only ameasure of the logarithmic standard deviation which has units of mm. The square
root approach (Eq. 2.54) and the log approach (Eq. 2.49) yield identical results sy« =
Sylog = 3.84, which in atrue lognormal distribution would be identical to the gradation
coefficient syag = 3.88 (Eq. 2.53) aswell. Some of the geometric and arithmetic sorting
coefficients are transformable.

The geometric sorting coefficient of the untransformed datain mm Sqg1 and Inman’s
arithmetic sorting coefficient 5 computed for g-units are convertible using Egs. 2.51 and
2.52. Similarly, the standard deviation in g-units can be estimated from the standard
deviation computed from particle sizesin mm according to the moment method (Egs.
2.56 — 2.58) by applying Eq. 2.59. The Trask sorting parameter sy isnot comparable with
sorting computed by the other methods because it is based on different percentiles.

The various computations of skewness and kurtosis do not compare well because their
computations are too dissimilar.

2.1.5.8 Percent fines

Stream monitoring and fisheries studies are often concerned with the amount of fine
sediment (sand and fine gravel) in the streambed because large amounts of fine sediment
impair the spawning success of salmonid fish. Depending on the fish species concerned,
or on the monitoring objective, fine sediment might comprise medium sand < 0.85 mm,
sand < 2 mm, or various sizes of fine gravel < 3.36, 4.4, 6.4, or 9.5 mm (Reiser and
Bradley 1993; Rice 1995). The amount of fine sediment is usually computed as the
cumulative percent frequency finer than a specified particle size and referred to as the
“percent fines’. The percent finesis amore sensitive indicator of the amount of fines
than the Ds or D, because the size of small percentilesis affected by the coarse part of
the distribution.

For a comparison of the percent fines over space or time, Church et al. (1987)
recommend that the percent fines be computed for size distributions truncated at a certain
large particle size. Thisisto ensure that the percent finesis not affected by the presence
of afew large particles. If, for example, alarge cobble was added to one of two
otherwise identical gravel samples, and that cobble comprised 20% of the total sample
mass, then the percent fines would be smaller in the sample with the cobble than in the
sample without the cobble. The cut-off particle size for truncation should be some large
gravel size present in all samples, e.g., 45 or 64 mm.

The percentage surface fines computed for a given deposit does not only depend on
whether the sample was truncated or not, but also strongly depends on the sampling
method. Picking particles off the surface (an areal surface sample) produces alower
percentage surface fines than removing a thin layer of particles from the surface (an
armor layer sample). Thisaspect isfurther discussed under bimodality in Section 2.1.5.9
because alarge percent finesin agravel bed leads to abimodal particle-size distribution.
See also Sections 4.1.2 and 4.1.3 for the effect of different sampling methods on the resulting
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particle-size distribution. The percentage finesin a sample also varies between different
methods for identifying the particle to be picked up from the streambed, and is likely to
vary between operators (Section 4.1.1.3).

2.1.5.9 Bimodality

A bimodal particle-size distribution has two modes, i.e., two distinct peaksin the
frequency distribution, one in the finer and one in the coarser fraction. If the percent
sand and fine gravel becomes high enough, the distribution becomes bimodal, developing
amode (peak) in the sand range in addition to the other mode (peak) in the gravel range.
Bimodality can indicate the presence of two distinct particle-size popul ations, supplied
from a different source, with perhaps different petrology and abrasion resistance, and
each population may have had a different transport distance. The recognition and
characterization of the degree of bimodality isimportant for studies of sedimentation and
fluvial geomorphology because incipient motion conditions and transport behavior are
different in unimodal and bimodal sediment mixtures (Wilcock 1993). Bimodality isalso
of concern for matters of stream ecology and fish spawning habitat, especially if one of
the distribution modesisin the size range of sand to pea-gravel.

Bimodality parameters

Wilcock (1993) proposed a parameter B to characterize the degree of bimodality. The
parameter is based on the distance between the two modes, and on the amount of
sediment contained in the modes. The distance between the modes is expressed in the
eguation as the ratio of the particle size in mm of the coarse mode D, and the fine mode
Dt Inanalogy to the definition of geometric standard deviation, the square root is taken
from thisratio. To thisratio isadded the proportion of sediment contained in the coarse
modes P, and in the fine mode Py,,. These proportions are obtained by summing the
decimal frequency of four (k) contiguous size classes of 1/4 @-unitsthat contain the
mode.

k

k
Pem = Z My and  Ppn = Z Mk (2.77)
i=1

i=1

For sieving in 1/2 g-units, k becomes 2, comprising the size class of the mode and the
largest neighboring size class. For polymodal distributions, Eq. 2.77 is applied to al
modes. If all sediment is contained in one of the two modes, P¢y, + Psm = 1. Thisvalue
decreases towards 0 as the degree of bimodality reduces. Bimodality may be computed
from (Wilcock 1993):

B= gﬁﬁs (Pem + P (2.78)
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Wilcock (1993) found athreshold value of B = 1.7, and that gravel is entrained as
unimodal sediment if the bed-material bimodality valueislow (B<1.7). By contrast,
bedload is entrained as bimodal sediment if the bed-material isbimodal (B>1.7). The
particle-size distribution in Table 2.3 has a coarse mode in the size class of 45.3 mm. Eq.
2.78 could be applied to test if the increased frequency for the size class of 22.6 mm
gualifiesfor bimodality. The square root of the ratio of the particle-size class of the
coarse mode (45.3 mm) and the presumed fine mode (22.6 mm) = 2°° = 1.41. The
decimal frequency of the coarse mode and its largest neighboring size class (64 mm), and
the decimal frequency of the presumed fine mode and its largest neighboring size class
(16 mm) are summed, yielding 0.111 + 0.109 + 0.106 + 0.094 = 0.42. The product of the
two bracketed termsin Eq. 2.78 is 0.6, which is smaller than the threshold value of 1.7.
Thus, the particle-size distribution in Table 2.3 is not bimodal.

Sambrook Smith et al. (1997) proposed a dightly different bimodality index (B*). This
index accounts for the relative size of the two modes and produces a numerical value that
reflects the magnitude of the difference in the particle size of the fine and the coarse
mode. The bimodality index is applicable to particle-size distributionsin @units.

T | (279)

@ and @, are the @-sizes of the primary and the secondary mode, respectively, and Py,
and P,,, are the proportions of sediment contained in the primary and secondary mode.
The above index is always positive. Bimodality startsat B* > 1.5 - 2.0. Exchanging the
absolute signsin Eq. 2.79 for brackets renders B* negative for a primary mode in the fine
sediment. Applied to the particle-size distribution on Table 2.3, the primary and
secondary modes are 5.5 and —4.5 ¢, and contain 11.1 and 10.6% of the sediment,
respectively. Thus, Eq. 2.79yields|-5.5--4.5|- (11.1/10.6)=1.0- 1.05=1.05and
indicates that the distribution is not bimodal.

Surface bimodality and percent fines. effect of different sampling methods

Bimodality and the percent fines (Section 2.1.5.8) are related, although not by a
monotonic function, and both the degree of bimodality and the percent fines are altered
depending on how the sediment on the stream surface is sampled. Sambrook Smith et al.
(1997) developed a numerical model to show this change. Assand is supplied to agravel
surface, sand first fills the voids between the gravel particles, until, asmore sand is
added, even the big particles become buried. The entire amount of sand in the
experiment adds up to 100 %. For various percentages of sand added, the surface
sediment is repeatedly sampled using two different methods: (1) picking individual
particles off the surface (areal surface samples), and (2) removing alayer of surface
sediment (armor layer sample). Both the percent surface sand and the degree of
bimodality were computed for given
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percentages of sand added to the streambed, and both parameters varied depending on the
sampling method used.

When particles were picked off the surface, the percent sand computed from those areal
samples S, quickly rose to 80% as the voids between the large clasts started to be filled
(20% sand added). The percent sand computed from the volumetric armor layer samples
S, increased slowly, reaching not even 40% when the entire surface was covered with
sand (at S, = 100) (Fig. 2.21).
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Fig. 2.21: Percent surface sand and degree of bimodality computed for two different sampling methods for
increasing amounts of sand. S, and B* , are the percent surface sand and degree of bimodality computed for
areal surface samples, S, and B*,, are the percent surface sand and the degree of bimodality computed for an
armor layer sample (Reprinted from Sambrook Smith et al. (1997), by permission of the American
Geophysical Union).

The degree of bimodality differed even more between the two sampling methods. For the
areal samples, bimodality B* ,, increased sharply and was most pronounced when about
50% of the surface was covered by sand (S, = 50%). For larger amounts of sand, the
degree of bimodality again decreased. When using armor layer samples, bimodality B*,,
increased slowly as progressively more sand was added to the bed.

2.2 Shape analysis

Particle forms are characterized by two factors. shape and angularity. Shape refersto the
ratio of the three axes lengths, whereas angularity refers to whether a particle has angular
edges as opposed to a rounded surface.
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Many parameters for characterizing particle form were developed in the 1930s to 1960s
because it was realized that particle form affects the area exposed to forces of flow, drag
forces, lift forces, and therefore particle entrainment, transport, and deposition. Thus, two
particles of the same weight or the same b-axis size but with different shapes can respond
quite differently to water flow. It istherefore important to consider whether a particular
study requires knowledge of the longest, the intermediate, or the shortest axis, or of al
axes.

2.2.1 Compact, platy, bladed, and elongated particle shapes

Particles are classified into four basic shapes according to the ratios of the three particle
axes, where aisthe longest axis, b isthe intermediate axis, and c is the shortest axis. The
length of the particle axes can be measured manually using aruler, calipers, or a pebble
box (Sections 2.1.3.7 — 2.1.3.8). An approximation of particle axeslengths can also be
computed from the axes of an ellipse that best fits the planimetrically determined outline
of a particle on a photograph (see photosieving, Section 4.1.3.3). The ellipse-
approximation eliminates the effects of angularity on particle shape, and thus improves
the determination of particle shape for angular particles (Diepenbroek and De Jong 1994).

The particle shape of adisc is characterized by its small c-axis. The degree of disc-shape
is quantified by the axisratio of c/b (Krumbein 1941). A sphere-like particle, in turn, has
almost identical a, b, and c axes. A bladed particleisthin and long, i.e., it has small
ratios of ¢/b and b/a, whereas arod-like particle islong, which is quantified by a small b/a
ratio (Fg. 2.22). Fg. 2.23 depicts these particle shapes using blocks for smplicity.
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Fig. 2.22: (A) Relation between axes ratios and particle shape (Zingg's classification) (Redrawn from
Krumbein (1941), by permission of the Society for Sedimentary Geology). (B) Relation between sphericity
and particle shape. Lines of equal sphericity shown as function of the axes ratios b/a and c/b. (Redrawn
from Krumbein (1941), by permission of the Society for Sedimentary Geology).
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Sneed and Folk (1958) classify particle shape in terms of platyness, bladedness,
elongatedness, and compactness (Fig. 2.23). The form factor F distinguishes between
platy (i.e., disc shaped), bladed (i.e., ellipsoid) and elongated (i.e., rod shaped) particles
and is computed from

QO
1
O

(2.80)

M
I
:|
1
(@]

F < 0.33 defines platy particles, 0.33 < F < 0.67 defines bladed particles, and F > 0.67
defines elongated particles. The degree of platyness, bladedness, and elongatedness, i.e.,
the degree of deviation from compactness S is defined by the ratio of

C
=2 (2.81)
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Fig. 2.23: (A) Sphericity-form diagram showing relation between particle shape and sphericity (Redrawn
from Sneed and Folk (1958), by permission of the University of Chicago Press). (B) Form triangle with
illustration of particle shapes using blocks of the appropriate axes ratios; al blocks have the same volume
(Reprinted from Sneed and Folk (1958), by permission of the University of Chicago Press).
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Particles are compact (C) with a shape close to a sphereif the Sfactor > 0.7. Particles
classify as compact platy, bladed, or elongated if 0.5 < S< 0.7, as platy, bladed, or
elongated for 0.3 < S< 0.5, and as very platy, bladed, or elongated for S< 0.3. The four
classes for compact, platy, bladed, and elongated, plus the degrees of deviation from
sphericity (e.g., compact bladed or very bladed) yield atotal of 10 shape categories. The
numerical values of the F and Sfactors are plotted in a triangular diagram from which the
descriptive term of particle shape can be read.

2.2.2 Sphericity

Particle sphericity refersto how well a particle of a given shape relates to the transport
properties of a sphere, whereas the expression roundness refers to the degree to which the
edges of a particle are rounded (Section 2.2.3). Sphericity can be used as an indication of
fluvial transport distance (Section 2.2.2.1), as well as a measure of particle suspensibility
and transportability, i.e., the ability of a particle to remain in transport once entrained
(Section 2.2.2.2). Since both conceptsinvolve different principles, i.e., abrasion versus
suspensibility, it isimportant to use different definitions of sphericity in each case.

2.2.2.1 Indication of fluvial transport distance

As particles are transported over long distances, abrasion wears off not only the particle
edges (see roundness, Section 2.2.3), but may tend to equalize the three axes lengths as
well, thus making a particle more spherical. Wadell (1932) defined this kind of sphericity
asthe third cube of the ratio of a measure for particle volume to the volume of the sphere
circumscribing it. Thisexpression was simplified by Krumbein (1941) and Pye and Pye
(1943) who suggested computing sphericity ( as

W= %'Larcﬁg (2.82)

Krumbein's sphericity reaches the value of 1 for perfect spheres and decreases towards O
for extremely platy or elongated particles. Particles of different shapes can have the same
sphericity value. However, platyness and el ongatedness do not increase at even rates as
the degree of sphericity decreases. For example, a particle with an elongation ratio of b/a
= 0.6, and a platyness ratio of c/b = 0.2 has a sphericity value of ¢ =0.42, but a particle
with an elongation ratio of b/a= 0.2, and platynessratio of ¢/b = 0.6, has a sphericity
value of = 0.32 (Fg. 2.22). This sphericity index acknowledges that as sphericity
increases with transport distance, the degree of elongatedness wears off more quickly or
pronouncedly during fluvial transport than the degree of platyness.

Particles of different structural properties from different geological parent material have
different susceptibilities to becoming sphere-like. Granite tends to break into cubic blocks
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and reaches a high degree of sphericity quickly with increasing transport distance,
whereas the “layered” structure of schist produces disc-shaped particles that do not
necessarily become highly spherical even after long transport distances. Similarly, large
basalt particles tend to chip pieces off during transport, thus producing small elongated
instead of spherical particles.

Not all researchers agree on the degree to which fluvial or coastal transport affects
particle sphericity. Bartoloma (1992) concluded that sphericity and shape are
predominantly controlled by the structural properties of the source rock, and barely
affected by transport, and that consequently sphericity and roundness (Section 2.2.3) are
independent properties.

2.2.2.2 Indication of particle transportability

Two definitions of sphericity are commonly used to refer to particle transportability: the
Corey (1949) shape factor C, and the Sneed and Folk (1958) effective settling sphericity
;. Both definitions are similar and transformabl e, and both definitions reach the value of
1 for perfect spheres and decrease towards O with increasing departure from sphericity.

Corey shape factor

The Corey (1949) shape factor is used as a parameter to determine the particle settling
velocity which for particles of equal weight is affected by particle shape. The shape
factor is computed from (Y ang 1996, p.4):

C

C= m (2.83)

Ellipsoidal or compact bladed gravel particles with long fluvial transport distances have
values around 0.7, whereas bladed particle shapes in mountain streams have values
around 0.5.

Sneed and Folk effective settling sphericity
Sneed and Folk (1958) define the effective settling sphericity as

w5 2

and provide a diagram to show how effective settling sphericity isrelated to particle
shape: the form factor F that distinguishes between platy, bladed, and elongated particles
(Eg. 2.80) and the degree of compactness S(Eq. 2.81) (Fig. 2.23).
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Lines of equal settling sphericity go diagonally across the diagram, and show that for the
same degree of flatness (axisratio of c/a) platy particles offer more resistance to settling
than elongated particles. Thus, the same value of ; = 0.7 is obtained for compact platy
aswell aselongated particles (Fig. 2.23). Thisdefinition of settling sphericity indicates
the tendency of platy particlesto settle relatively dowly. Thus, platy particles easily
remain suspended in flow, and once entrained can be transported over long distances.

If lines of equal Corey shape factors were included in the Sneed and Folk diagram (Fig.
2.23), they would plot approximately parallel but below to the lines of equal settling
sphericity. Linesof equal values of the Krumbein (1941) sphericity would also plot
diagonally across the Sneed and Folk diagram, but point into the opposite direction of the
Sneed and Folk sphericity. Compact elongated and platy particles would plot on the same
line indicating a similar transport distance. The Krumbein sphericity, referring to
transport distance, and the Sneed and Folk sphericity, referring to transportability,
intersect and have the same numerical values for particles roughly along the dividing line
between bladed and elongated particles with F values around 0.67.

2.2.3 Roundness or angularity: analytical and visual approaches

Roundness describes how well the “edges’ of a particle are rounded. Roundness and
sphericity are not conceptually related and are largely independent, however, nearly
spherical fluvial particles seldom show any sharp edges, whereas particles that are
ellipsoidal, bladed, or elongated are much more likely to show sharp edges.

Angular particles tend to wedge into each other and do not roll well. Thus, angularity
reduces particle mobility and probability of entrainment. Roundnessincreases as the
edges wear due to abrasion. Thus, high angularity also indicates that a particle has not
been transported over along distance. A number of different roundness indices has been
developed and are summarized by Swan (1974).

Wadell (1932) developed a complicated procedure of measuring and computing particle
roundness P that computes the mean size of the radii r that can be fitted into the number
of cornersn that a particle has and divides this number by the radius of the maximum
inscribed circle R so that

_ 2
P=""n (2.85)

On the basis of Wadell’ sresults, Krumbein (1941) developed a chart for the visual
estimate of particle roundness which has values between 0.1 (for very angular) and 0.9
(for very smooth particles) (Fig. 2.24). Mean roundness P,,, for a deposit is computed by a
weighting approach that multiplies the roundnessindex P by the number of particles n that
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Fig. 2.24: Images for visual analysis of roundness for pebbles 16 - 32 mm. The analysis should be carried
out for each particle-size class individually. The chart should be enlarged so that shown particle b-axes are of
the same length as the particles to be analyzed. (Slightly modified from Krumbein (1941), by permission of
the Society for Sedimentary Geology).

have that roundness, sums the Pn products and divides by the total number of particlesin
the sample 2n.

2P n
2n

P = (2.86)

Further discussion of conceptual and practical issues regarding particle roundness are
provided by Diepenbroek et al. (1992).

2.2.4 Shape/roundness matrix: visual field classification

Some field studies might want to classify particles not only by one, but by two parameters
combined, such as particle shape and angularity, in order to differentiate between deposits
of different sedimentary origins or depositional processes. Crofts (1974) designed a chart
for visual field evaluation of particle shape and angularity (Fig. 2.25). For 50 random
particles collected from a 1-m? area, the first step of the visual analysis distinguishes
between spherical and flat particles. Particles are assigned to one of the 6 shape categories
ranging from very spherical to very flat (neglecting the degree of elongatedness). Then
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Fig. 2.25: Visual 6-by-6 matrix distinguishing between the degrees of sphericity-to-flatness and roundness-
to-angularity (top), and example of plotted results (bottom). (Reprinted from Crofts (1974), by permission

of the Society for Sedimentary Geology.)

each particle is sorted into one of the 6 degrees of angularity. The number of particles
within each of the potential 36 shape-angularity categoriesis recorded and may be plotted

VS S SS SF F VF

very
angular

. angular

sub-
angular

sub-
rounded

rounded

well

| rounded

as abivariate scattergram. For such a plot, the number of particles per category is

grouped into 4 - 6 evenly spaced intervals, and each consecutive interval is assigned an
increasing degree of shading or hatching. The visual analysis of 50 particles from one
field location takes less than 30 minutes including the time for field plotting the results.
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The same approach as outlined above can be applied to any two-particle parametersif
their variability can be described in certain visually distinguishable increments. For best
results, the visual classification matrix should be larger than 4 by 4, but not exceed 9 by 9
fields. Each study needs to find the optimum matrix size, as well as the optimum sample
size, compromising between accuracy and time expenditure.

Visual field classification can also be used to distinguish between three particle
parameters. An example in which particle-size mixtures are visually classified into three
major and 12 minor Size categories, and results are plotted in ternary diagrams, is
provided by Buffington and Montgomery (1999a) (Section 4.1.3.5).

2.2.5 Pivot angles and their computation

One of the most important applications of particle-shape parametersin sediment transport
studies of gravel-bed riversis the determination of the pivot angle, also called the angle of
repose or intergranular friction angle. The pivot angle isthe angle @ that atop particle of
the diameter D has to overcome when rolling over a bottom particle with the diameter K
that is partially under and partially in front of it (Fig. 2.26). Thus, pivot angles control the
force required for particle motion, and are an integral part of force-balancing equations.

D
Flow ——>
- @
v
Gravity

Fig. 2.26: Definition of pivot angle @, and particle diameters D (top particle), and K (bottom particle).

Pivot angles are difficult to measure in the field (Johnston et al. 1998). Measurements are
therefore either performed on pieces of reconstructed streambed in alab (Kirchner et al.
1990) or the pivot angle is estimated from various particle parameters such as:
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» particle roundness,

e particle shape,

» packing (base of two, three, or four bottom particles K), and
* relative particle size D/K.

Angularity or roundness

Pivot angles increase with angularity (Fig. 2.27), areason why riprap is often angular. In
order to rotate an even-sized triangle (all inside angles = 60°) situated on aflat plain over
one of itsangles, a pivot angle of 60° needs to be overcome. The pivot angle for a square
with four angles of 45° is45. Pivot angles @ for even-sided polygons can be expressed as
(Julien 1995):

180°
n

o= (2.87)

where n isthe number of angles within the polygon. For a sphere, the number of inside
anglesisindefinitely large, thus @ = 180°/~ = 0°, which means that there is no pivot angle
for asphere on aflat surface. Pivot angles on a streambed may exceed thosein Fig. 2.27
because surface particles may be nestled in shallow depressions on top of three or four
bottom particles.

-———— < N - = AN
/ V3 7 3 /4
/ Jal% ‘s -
o 180 o 180 o o 180 . 18 180
3 4 5 6 00

Fig. 2.27: Effect of angularity on pivot angles on aflat surface (Redrawn from Julien (1995), by permission
of Cambridge University Press).

Particle packing

Pivot angles vary with packing patterns of the bottom particles. A spherical top particle D
can be nestled on a base of two, three, or four spherical bottom particlesK (Fig. 2.28).
Pivot angles described in Fg. 2.28 vary with three parameters:. (1) the sizeratio D/K, (2)
whether the top particle D rolls over the top (grain-top rotation) or over the saddle
between two spheres K (saddle-top rotation) and (3) the number of bottom particles K
comprising the base for the top particle D (Li and Komar 1986; Julien 1995).
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Fig. 2.28: Pivot angles for unisized particles (D/K = 1) with different packing: top particles lying on top of
two (left), three (center), and four particles (right). (Redrawn from Julien (1995), by permission of
Cambridge University Press).

Particle shape

Spherical particles have smaller pivot angles than particles with ellipsoidal, elongated, or
platy particle shapes. Pivot anglesfor spheres are approximately 10° lower than those for
ellipsoids which are about 10° lower than those for angular particles (Li and Komar
1986).

Relative size
Miller and Byrne (1966) express the effect of relative particle size D/K on the pivot angle
@ by anegative power function.

®=a %@b (2.88)

Pivot angles for small surface particles D nestled on top of large bottom particles K with
D/K = 0.3 are 40-50° larger than the pivot angles for large surface particles on top of
small bottom particleswith D/K = 3 (Fig. 2.29). Thiseffect of relative size is seen for all
particle shapes.

Pivot anglesin channel beds

Kirchner et al. (1990) measured pivot angles on water-worked flume surfaces and
concluded that pivot angles obtained from experiments with well sorted and well rounded
particlesin regular packing are too low, and vary too much with relative size. Kirchner et
al. (1990) therefore suggest the following a-coefficient and b-exponent for Eq. (2.86)
(Fg. 2.30):

D 03
@5y = 55.2 @gtﬁ (2.89)
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Fig. 2.29: Pivot angles for spherical, elipsoidal, and angular particle shapes as well as for imbricated
deposits as functions of relative particle size, i.e., theratio of entrained particle size D to bottom particle size
K (plotted with data from Li and Komar 1986).

where @5, isthe median pivot angle, and Ksg is the median size of the bottom bed-
material particles. Gravel-bed riverswith particles of various dimensions, various relative
Sizes, shapes, rotation modes, and packing have a wide range of small and large pivot
angles (Buffington et al. 1992). Each riverbed is characterized by a unique probability
distribution of pivot angles, and the parameters of the distribution (median, skewness, and
kurtosis) are afunction of various particle parameters.

Buffington et al. (1992) include aterm for bed-material sorting o in their equation and
provide the coefficient x (Eq. 2.90). Adjusting x facilitates computing the probability

distribution of pivot angles. tan®, to which critical shear stress 1., is proportional, can vary
widely on a given streambed, indicating the differential erodibility of surface particles.

Py = ax @%ﬁbx : G_CX (2.90)
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natural gravel-bed material:
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Fig. 2.30: Pivot anglesfor particles on channel surfaces computed from Eq. 2.89 by Kirchner et al. (1990)
(thick line); Median pivot angles computed from Eq. 2.90 by Buffington et al. (1992) (thick line with
bullets). For comparison: pivot angles for saddle-top rotation of well sorted spheres and ellipsoids in regular
packing, based on results by Li and Komar (1986) (thin hatched lines).

2.2.6 Sample size for shape analysis

The number of particles used to establish the dominant bed-material particle shape
depends on the variability of the particle shapesfound at asite. There also might be
several populations of particle shapes corresponding to differences in hardness of the
source rock and differences in travel distance. Particles originating from soft rocks, or
those traveled farthest are more rounded and more ellipsoidal than hard rocks or bedload
supplied to the mainstem stream by a small tributary just upstream. Particles from local
rockfall or debris flows are usually angular and deviate from a spherical or ellipsoidal
particle shape.

Because the situation can be quite different from stream to stream, pilot studies are
recommended. Thefirst step isto visually identify particle-shape populations. Then
collect 25 particles from each population, measure the 3 axes, compute the Sand F form
factors (Egs. 2.80 and 2.81) and plot them in a sphericity-form diagram (Fig. 2.23). If the
datafor 25 particles do not plot closely together, more particles may need to be analyzed
or the criteria for identifying particle shapes need to be changed. Another option isto
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apply Student’ s t-statistics to measured particle-shape parameters and to determine the
sample size necessary for an acceptable accuracy and a given particle-shape variability
(see Section 5 on sample size).

2.3 Particle density, specific weight, specific gravity, and submerged
specific weight

Many equations for sediment transport or the initiation of particle motion require particle
density or the specific particle weight asinput. Particle density is particle weight (or
mass) (m) divided by itsvolume V. Conventionally, particle density is abbreviated by the
Greek letter “rho” with the subscript s for sediment (ps) to distinguish it from the fluid
density (in this case water) which is noted by p.

Ps = (2.91)

<I3

The units of particle density are g/cm®, or kg/m®. Particle massis measured by weight and
particle volume is either measured or estimated from particle shape. To measure particle
volume, take a large measuring beaker for large particles, or a graded cylinder for small
rocks, fill it about half full with water and record the volume of water. Place the particle
into the water (particle must be completely submerged) and record the water volume
corresponding to the elevated water level. The difference between the two water volumes
in the beaker isthe particle volume. When particles are small, or when one wants to
know the average density of particlesin amixture, several particles can be analyzed
together. To reduce measurement errors, the entire analysis should be repeated several
times with new particles.

The density of quartz and feldspar particlesis 2.65 g/cm® or 2,650 kg/m°. Thisvalue can
often be used as afirst approximation of particle density because many particles contain a
high percentage of quartz and feldspar. Rock density is less than the one for quartz when
rocks have poresfilled with water or air. Sandstone rocks, for example, have a density of
about 2.2 g/lem®. Solid, dark volcanic rocks or those with high metal content have a
density of more than 3 g/cm®. Density is to some extent dependent on particle size,
Cobble and gravel-sized pieces of vesicular basalt or pumice might have densities
between 2 and 1 g/cm®. Thisvalue can increase to about 3 g/cm® when vesicular volcanic
rock is ground into sand size and the vesicular structureislost. Table 2.15 presents
particle densities for common geological materials.
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Table 2.15: Particle densities (g/cm®) of various materials’

Material Density
humus, pumice <15
sandstone 21-22
limestone, quartz, granite, porphyry 2.7
feldspars (the “white” in granite) 25-28
dolomite, anhydrite 29
micas (the flaky, shiny parts of granite) 2.7-33
apatite 31-33
peridotite, gabbro >3.2
basalt, diabas 3.3
iron 7.2

*for comparison: water density at 4°C = 1.00 g/cm?®

Specific particle weight
Specific particle weight y isthe product of particle density ps and acceleration due to

gravity g. For most applicationsin gravel-bed rivers g can be assumed to take a val ue of
981 cm/s’, or 9.81 m/s’.

%=ps g = 265 9Bl 2= 2600 2 (2.92)

Specific gravity of sediment and water

Specific gravity isthe dimensionless ratio of specific weights or densities. For quartz
particleswith a density of 2.65 g/cm® and water with a density of 1 g/cm?, the specific
gravity is

2
T65 = 265 (2.93)

G- X _ L
Yo P

The density of pure water at 4°C (0,y) iS1 g/em’. River water with suspended sediment
concentration and a temperature above 4°C may have a density (o) higher than 1,
perhaps 1.005. The specific gravity of river water G,,, is computed from

1,005
Gy, = M = Bw _ 2389 4 g5 (2.94)
Yow  Ppw 1
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Submerged specific weight

The submerged specific weight p’ s of a quartz particle is the difference between the
particle density and the fluid density. For clear water, the submerged specific particle
weight is

0's= ps- pr =2.65-1=1.65g/cm’. (2.95)

For heavily sediment-laden water with a sediment concentration of 100 g/I, fluid density
increases to 1.23 g/cm®. Thus, the submerged specific particle weight is reduced to 1.42
g/cm®. This reduction in the specific weight of particlesin heavily sediment-laden flow
leads to an increase in particle mobility and may even cause bouldersto “swim”.

2.4 Bulk density, porosity, and void ratio

Knowledge of sediment bulk density is needed to evaluate the pore space available for
aguatic habitat (Milhous 2001). Bulk density p, is defined asthe ratio of the weight of a
bulk material m, that is contained in a specific bulk volume V.

P =, (2.96)

In situ gravel sediment, inundated sediment

Bulk density of riverbed material should be measured on undisturbed samplesin their
original packing because the bulk density changes when the natural packing is disturbed
by shoveling the sediment. Piston cores also disturb the original packing and are not
suitable for measurements of bulk density in gravel deposits.

Milhous (pers. comm. 2000) suggested that bulk density of inundated sediment in gravel-
bed rivers may be measured in situ from large freeze cores (Section 4.2.4.8) taken from
the substrate below the water surface, so that the sample is completely saturated with
water (i.e., al poresfilled with water, none with air). The cores are weighed frozen and
fully waterlogged (m,), as well as after the ice has melted and the sediment has dried (my).
To compute the bulk density of the sediment in the core, the dry sediment massisdivided
by the total core volume which is the volume of the sediment particles Vs plus the volume
of the water in the pores V,,.

m
Po =\ + Vs

(2.97)
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The volume of the sediment particlesis calculated from

ms
Vs = 2.98
° Prw - Gs ( )

where p,,, IS the density of the river water, and G; is the specific gravity of the sediment
(Section 2.3). The volume of the water contained in the sample is computed from

Vy=—"— (2.99)

where G,,, is the specific gravity of the river water (Section 2.3).

In situ gravel sediment, dry surface
Milhous (2001) suggested the following technigue for measuring the bulk density of
subsurface sediment in adry part of the streambed:

Step 1. Measurethe volume of water that displacesthe surface sediment or the

armor layer
Remove all surface particles from a dry streambed area for a measurement of the
subsurface sediment bulk density. Alternatively, remove the armor layer (Sections
4.1.3.1,4.1.3.2, 4.2.1.2) before measuring the subarmor bulk density. Place a square
frame, 0.6 —0.9 min length, and 2.5 — 5 cm high onto the area cleared of armor
sediment (Fig. 2.31). Place some sediment along the inside of the frame just next to
the frame to create a smooth transition between sediment and frame. Smooth out the
cornersaswell. Do not sample or disturb this sediment. Cover the exposed subsurface
sediment surface with a plastic sheet, and fit it snugly into al corners within the inside
of the frame. Fll the plastic-lined depression with water (river water isfine) and
measure the water volume needed until overflow using a large laboratory cylinder.
Alternatively, weigh the amount of water needed to fill the plastic sheet and compute
the volume using afluid density of 1,000 kg/m?® for clear, cold water. Discard the
water and remove the plastic sheet (Fig. 2.32 top). Be careful not to disturb the frame
or the exposed sediment surface.

Step 2: Measurethe volume of water that displaces the subsurface or subar mor
sediment
Take a subsurface bed-material sample with avolume of about 20 liters from inside
the area within the frame (See Section 4.2.2 for vertical extent of a subsurface bulk
sample). Thissampleislater dried, weighed, and sieved. When extracting the sample,
the operator should try to create a hole with a smooth bottom. The operator should be

101



Fig. 2.31: Frame for measuring in situ subsurface sediment bulk density (Photo courtesy of R. Milhous).

careful not to disturb the exposed subsurface sediment surface or the position of the
frame while taking the subsurface sample. After the subsurface sampleistaken,
carefully line the hole with plastic sheeting and extend the sheet over the exposed
sediment surface within the frame, and the frame itself. Make sure that the plastic
sheet fits snugly into the hole and leaves no cavities. Air-filled cavities are especially
prone to develop in the bottom of the hole. Make sure the plastic sheet is everywhere
in contact with the bottom of the hole. Refill the plastic sheet with water and measure
the volume needed until overflow onto the gravel surface (Fig. 2.32 bottom).

The volume displacing the subsurface sample Vg, is the difference between the volume of
the second V, and the first measurement V;.

Ve =Va- Vi (2.100)

The bulk density of the bed material pg, isthe ratio of dry weight of the subsurface
sediment removed from the hole my, to the volume of the subsurface sample Vg,
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_ Maup
Psub = Vaub (2101)

Bulk density measured thisway in several gravel-bed rivers ranged between 1.7 and 2.6
g/cm®, with a mean of 2.1 g/em?®.

Step 1:

Step 2:

Fig. 2.32: In situ measurements of the subsurface sediment bulk density.

Repeating density measurements to determine a mean value is advisable, because
differencesin material packing aswell as operator errors are likely to produce a range of
results. Note also that a 20-liter sample volume yields a sample mass of approximately 10
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kg and that several subsamples may be required to obtain the total sample mass necessary
for apreset accuracy of the particle-size analysis.

If the sediment porosity p is known, bulk density may also be computed from

Po=ps- (1-p) (2.102)

Effect of particle packing on bulk density

Particle packing can significantly affect bulk density. The weight of quartz sand filling a
10 liter pail (1,000 cm®, ca. 2.5 gallons) is not 2.65 g/cm® times 1,000 cm® = 26.5 kg, but
considerably less (approximately 20 kg). The exact weight depends on how closely the
guartz grains are packed. Particle packing can range between open and dense. The
packing is open or cubic when each unisized sphere has a neighbor exactly on top and
beneath, on the north, east, south, and the west side. The resulting bulk density for this
packing is 1.39 g/cm®. In the densest packing (rhombohedral), six spheres are clustered
around the center sphere, and have atop sphere in the “pocket” or depressions between
the bottom spheres. In this case, the bulk density is 1.96. Assemblages of natural
particles are seldom unisized, however. Thus, small particles fit between the voids | eft by
larger particles, and the packing becomes denser the wider the particle-size distribution.
Packing also becomes more dense as the deposit becomes more compacted due to
pressure or shock waves (e.g., more rice grains can befilled into ajar if one gently hits
the bottom of the jar). Bulk densitiesfor various sediments are presented in Table 2.16.

Table 2.16: Bulk density and porosity for various sediments with a particle density of 2.65 g/cm®.

Description Bulk density Porosity
(glem’) )
Unisized spheres in open (cubical) packing (theoretical) 1.39 0.48
Unisized spheresin closest packing (theoretical) 1.96 0.26
Clay 159-1.06 0.40-0.60
Silt _ 1.72-133 0.35-0.50
Fine sand (Smith and Wheatcraft 1993) 212-146 0.20-0.45
Coarse sand 225-172 0.15-0.35
Surface soil of wet clay 112 0.58
Surface soil of loam texture 1.28 0.52
Subsoil of sandy texture (Marshall and Holmes 1988) 161 0.39
Sandy loam compacted by heavy traffic 1.90 0.28
Sandstone 212 0.20
sand-gravel mixture (Carling and Reader 1982, freeze cores) 2.30 0.13
range in severa gravel-bed rivers _ _ 260-1.70 0.02-0.36
mean of several gravel-bed rivers } (Milhous, 2001, volume difference) 2,10 0.21
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Porosity

Porosity is defined as the ratio of the space taken up by voids to the total volume of
sediment. Porosity is adimensionless number lessthan 1, and may be expressed as a
percentage. Porosity p can be computed in two ways. One possibility is:

v%ﬁ
Vv _Vt'Vs _ ' S
= Vt

(2.103)

P=V Vi

where V, isthe volume of the void or pore spaces, V; isthe total volume of sediment, and
V; isthe volume of the sediment without pores. The dry mass of the sediment is ms and
particle density is ps. Alternatively, porosity may be computed from:

D = @-% (2.104)

Egs. 2.102 and 2.104 show that bulk density of a sediment deposit isinversely related to
porosity, and one term can be used to compute the other. Porosity isa measure important
for aquatic habitat studies, aswell asfor assessing the potential amount of finesin a
streambed. However, little is known about the spatial and temporal variability of porosity
and bulk density in gravel-beds because in-situ measurements of bulk density are time
consuming and therefore rare.

Void ratio

The void ratio e is a parameter similar to sediment porosity, and is computed from the
ratio of the volume of voids to the volume of sediment particles:

;i

W _ M-V
s

e=y Vv (2.105)

7]

Ps

Similar to porosity, void ratio also yields values smaller than 1, but the values are
somewhat larger.
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Example 2.1.
A subsurface sample taken with the water displacement method described in

Section 2.4 has atotal volume of V;, = 0.020 m® or 20 liter, and adry mass of m,
=42 kg. The parent material ismainly quartz with a particle density of ps =
2,650 kg/m®.

Bulk density p, = myV, = 42 kg/0.02 m? = 2,100 kg/m?®.
Sed. volume Vs = my/ps = 42 kg/2650 m® = 0.01585 n’.
Voidvolume V, = V,-Vs = 0.020 m®- 0.01585 m® = 0.00415 m".
Porosity (1) p = VWV, = 0.00415 m*/0.020 m* = 0.208 or 20.8%
Porosity (2) p = 1-(y/0s) = 1-(2,100(kg/m’)/2,650(kg/m®)) = 1-0.792 = 0.208
Voidratio e = V/Vs = 0.00415 m*/0.01585 m® = 0.2619



3. Spatial variability of bed-material size

Bed-material particle sizes may vary along the direction of stream flow (longitudinally),
between the stream banks (cross-sectionally), and vertically within the bed. This
variability occurs at various spatial scales. The objective of bed-material sampling may
be to characterize this variability in detail, or through integration to characterize the
streambed at a spatial scale larger than the bed-material variability (Section 6).

Bed-material sampling considers three spatial scales: the stream reach, a stream section,
and thelocal scale. A stream reach is approximately 5 - 10 channel widthslong, and the
gpatial variability of bed-material sizesin the reach scaleismainly tied to large bedforms
such asriffles, bars, pools, and steps. A stream section is comprised of a series of several
reaches that are either ssimilar in stream type and bed-material composition or feature a
shift in stream type and bed-material composition such as downstream fining. The local
scale covers streambed areas of afew m? or less. Analysis at the local scale focuses on
bed-surface structures such as particle clusters, sediment lobes and deposits of finesin
pools or backwater areas, aswell aslocal deposits of coarse particles. Patterns of spatial
variability of bed-material size and the processes causing it are discussed in Section 3 of
this document because spatial variability of bed-material sizes hasimplicationsfor site
sel ection and sampling schemes (Section 6).

3.1 Downstream fining

Spatial scale and processes

Downstream fining of the surface sediment is a process resulting in large-scale spatial
variability of bed-material sizes. Usually, downstream fining occurs over a stream section
several reaches long, but might occur over shorter distances aswell. Downstream fining
may be attributed to a number of mechanismsincluding local control of stream gradient,
coarse tributary sediment supply, or particle abrasion and breakdown (Surian 2000).

Local grade control may be caused by geological uplift, blockage of the valley by mass
movement, or man-made dams. A decrease in stream gradient leadsto a decrease in the
amount and particle size of bedload transport (transport capacity and competence)
(Sambrook Smith and Ferguson 1995; Ferguson et a. 1998). Logjams can also act asa
local grade control and lead to downstream fining towards the upstream side of the log
jam. Bed scour and alag deposit of coarse bed material on the downstream side of the log
jam can exacerbate the downstream fining trend in a series of log jams (Rice and Church
1996a). Coarse tributary sediment supply that can be transported only on rare occasions
causes rapid downstream fining between tributaries (Rice and Church 1998). A supply of
fluvial sediment that experiences particle abrasion and breakdown easily can cause rapid
downstream fining as well (Sambrook Smith and Ferguson 1995).
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Implications for sampling

The usual objective for sampling a stream section in which particle sizes become finer
downstream is to demonstrate the degree of downstream fining and to link it to a potential
cause. Sampling methods suitable to demonstrate a downstream fining trend vary
depending on the situation. Transects selected at even-spaced intervals may be suitable if
the cross-sectional variability isnot too large. Asthe lateral variability increases, samples
could be taken from a sequence of riffles because riffles tend to be laterally less variable
than other cross-sections. Alternatively, one could sample the 30 largest particleswithin a
preset geomorphological unit, e.g., abar head, or sample al particles contained within a
small sampling area, e.g., within 0.5 m? at the center of abar (Sampling Procedures,
Section 4). The downstream increase of fine sediment may cause abimodal particle-size
distribution (Section 2.1.5.9) and the devel opment of patches of fine and coarse sediment,
with the number and size of fine patches increasing downstream (Seal and Paola 1995;
Sedl et al. 1998). Inthis case, gravel and sand patches are sampled independently from
patches intersected by a transect or falling within a preset area (Spatial Sampling
Schemes, Section 6).

The stream situation determines not only the sampling locations, but also the particle-size
parameter that should be analyzed. The Dso particle size may not be well suited to show
downstream fining, particularly in bimodal sediment distributions. 1t might be necessary
to analyze both the decrease of coarse (e.g., the Dgs, Section 2.1.4.2), and the increase of
fine sediment (e.g., the percent fines, Section 2.1.5.8).

3.2 Surface bed-material sizes within a reach

Bed-material sampling projects are often concerned with the spatial variability of bed-
material size within the reach scale (about 5 - 10 channel widthslong). At thisscale,
patterns of bed-material size variability are tied to channel morphology. The patterns,
such as downbar fining or an alternation of relatively coarse riffles with finer-grained
pools are recurring and generally predictable. Off-stream supply of non-transportable
large clasts or the presence of large woody debris can disturb systematic patterns.

Patterns of bed-material size, stream morphology, the three-dimensional patterns of flow
and bedl oad-transport processes are interdependent, but their relations may not necessarily
be straight forward. The next chapterswill first introduce the various geomorphological
units of streambeds, and then show the spatial variability of bed-material particle sizes
along geomorphological units such as downbar and landward fining on bars, lateral
variability acrossriffles, and differencesin riffle and pool sediment size.

3.2.1 Morphology of the bar-unit with pools, riffles, and bars

The longitudinal stream profile along the thalweg of regular riffle-pool sequencesis
undulating; pools form topographic lows and riffle crests topographic highs (Fig. 3.1). In
plan view, the morphological units pools, riffles, and bars are part of a single three-
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dimensional bedform called the pool-riffle-bar triplet (Church and Jones (1982), or the
bar unit (Dietrich 1987). The bar unit for a straight, a meandering, and a braided stream
isshown in Fig. 3.2. The upstream end of the bar unit is the pool that widens and shoals
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Fig. 3.1: Longitudinal (top) and plan view (bottom) of ariffle-pool sequence. The diagonal front lobe of
the bar, the submerged part of which isthe riffle. (Slightly modified from Church and Jones (1982), by
permission of John Wiley and Sons, Ltd.).

downstream until it terminates in an oblique shallow lobe front that extends diagonally
across the stream. The downstream part of this front lobe is usually above the water line
during low flows and forms the exposed bar. Farther upstream and towards the other side
of the stream, the lobe front becomesinundated. The deepest and submerged part of the
lobe front is the riffle crest (Dietrich 1987).

The bar unit extends over the length of two visible bars. Bar patterns that are repeated
along opposite banks are called alternate bars in straight streams or riffle bars (Dunne and
Leopold 1978), and point barsin meandering streams (Fig. 3.2, top and center).

The relative position of the riffle crest (or the “topographic high”) with respect to the bar
depends on whether the stream is meandering or straight, and on the angle with which the
riffle-forming bar lobe crosses the stream. In straight streams with alternate bars, the lobe
front crosses the stream not perpendicular, but at arather low angle to the banks. This
positions the riffle crest near the upstream end of the bar, or close to the downstream end
on the next bar upstream (Fig. 3.2, top). If the lobe front crosses the stream almost
perpendicular to the banks, the riffle appearsin front of the bar (Fig. 3.3).
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Fig. 3.2: Morphology of a bar unit in straight (top) and meandering (bottom) streams. Water depth is
deepest in the areas with darkest shading, while areas of lightest shading are bars that are exposed during
low flows. (Adapted after Dietrich (1987), Fujita (1989), and Whiting and Dietrich (1993)).
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In meandering streams, the bar wraps around the bend and forms a point bar. The bar unit
extends over the length of a complete meander (i.e., two bends) (Fig. 3.2, center). In
meandering streams, the riffle is at the crossing of stream curvature between two bars.
The pool in abend is part of the bar unit that extends to the next point bar downstream.
Table 3.1 summarizesriffle locations for various bar typesin pool-riffle or C-type
channels.

High Flow
Intermediate T ~—— ___
B~ T~
o RN 2 \wf-’f.’.sq_r_fg__ce PROFILE

Riffle

Fig. 3.3: Longitudinal (top) and plan view (bottom) of ariffle-pool sequence. Note that theriffle is located
in front of theriffle bar. (Reprinted from Newbury and Gaboury (1993), by permission of Newbury
Hydraulics, Ltd.).

Table 3.1; Riffle locations for various bar types in pool-riffle or C-type channels.

Bar type Position of riffle relative to the bar Figure providing example
Alternate bars  near the upstream end of a bar or Fig. 3.2, top
further upstream close to the down- Fig. 3.1, bottom

stream end of the next bar upstream

Riffle bars near the front or the center of the bar Fig. 3.3, bottom
Point bars at the crossing of curvature between Fig. 3.2, center
two point bars

Barsin mountain gravel-bed rivers with low sediment supply are usually poorly
developed, small in size or confined to stream reaches with alow gradient or local
backwater areas.
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As sediment supply increases and stream gradient flattens, bars become more prominent:
they increase in size, occupy larger proportions of the streambed and occur more
regularly. Within single-thread streams, bars reach their fullest extent as alternate bars.

A further increase in sediment supply leads to a braided stream in which flow dividesinto
several channels separated by bars that tend to shift and change during a high flow event.
Barsin streams with high sediment supply and rapidly changing channels can occur at
various locations within the streambed and assume a variety of different shapes (Fig. 3.4)
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Fig. 3.4: Bar typesin braided streams. Stahility increases from longitudinal barsto transverse barsto
medial barsto point, or lateral bars to diagonal bars. (Modified after Church and Jones (1982), by
permission of John Wiley and Sons, Ltd.).
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(Church and Jones 1982; Bluck 1982; Ashworth et al. 1992). A braided stream composed
of longitudinal or medial barsis shown schematically in Fig. 3.2 (bottom).

3.2.2 Bed-material particle-sizes on pools, riffles, and bars

3.2.2.1 Helical flow and bed-material size in a bar unit

The three-dimensional model of helical flow in which surface and bottom flow are at
angles to each other (Thompson 1986) can be used to describe longitudinal and lateral
variability of bed-material sizes within the reach (Fig. 3.5). On theriffle at the crossover
between meander bend curvatures, the near-bottom flow spreads diagonally across the
stream, extending from the thalweg to the upstream part of the bar on the opposite side of
the stream (Dietrich 1987). How traverses the bar head diagonally from the bank towards
the thalweg (Fig. 3.6) (Dietrich 1987). The diagonal spread of flow, combined with the
relatively low flow depth on riffles and bar heads reduces the flow velocity and leads to
deposition of coarse bedload during high flows (Anthony and Harvey 1991). How
velocitiesin the pool are high during high flows and can transport all but the largest
particles. Thus, in accordance with the zones of highest shear stress, bed material is
coarsest in pools, on riffle crests and on the upstream end of bars (Bridge and Jarvis 1982;
Dietrich and Smith 1984; Dietrich and Whiting 1989).

Pagl - riffie
24 units

bar head

R B
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riflle crest
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Fig. 3.5: Model of helical flow in a straight stream with a meandering thalweg (left), in a straight stream
with riffle-pool units (alternate bars), and in a meandering stream (Reprinted from Thompson (1986), by
permission of John Wiley and Sons, Ltd.).
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Fig. 3.6: Bottom and surface flow velocities and particle paths for coarse and fine bedload in a meander
bend. (Redrawn and dlightly modified from Dietrich and Smith (1984), by permission of American
Geophysical Union).

At the downstream end of a bar, bottom flow is directed from the thalweg up the bar
slope, transporting and depositing fine sediment at the downstream end of the bar. Thus,
gravel bars cover the full spectrum of transportable particle sizes, with the coarsest
particles on the upstream end, and the finest particles at the downstream end (downbar
fining). Downbar fining occurs on basically all free-formed bars, but has been
demonstrated in particular detail on large gravel barsin braided rivers (Smith 1974; Bluck
1982, 1987; Church and Jones 1982; Ferguson and Werritty 1983; Mosley and Tindale
1985; Ashworth and Ferguson 1986; Brierley and Hickin 1985, 1991, Brierley 1991;
Wolcott and Church 1991; Ashworth et al. 1992). The downbar fining trend is
accompanied by alandward fining trend that extends from the bar toe to the bank (e.g.,
Bridge and Jarvis, 1976, 1982; Keller and Melhorn 1981; Dietrich and Smith 1984; Lide
and Madej 1992).

At first sight, bars may seem to be ideal sampling locations because they are exposed and
dry during low flows. However, due to downbar and landward fining, no single bar
location is representative of the particle-size distribution of the entire bar, nor isthe
particle-size distribution on bars necessarily representative of the entire stream reach. In
coarse gravel-bed streams with low sediment supply, bar surface sediment tends to be
finer than the reach-average bed-material size, especially if the bar isforced by an
obstacleto flow. The difference in bar and channel particle size becomes |ess pronounced
as the sediment supply to the stream increases. Another factor that may cause problems
for bed-material sampling on barsisthat bars may feature small-scale surface structures
such as gravel lobes and particle clusters (Section 3.3).

Fig. 3.7 shows the spatial variability of surface bed-material size over morphological units

of pools, riffles, and bars. Trends of downbar fining, landward fining, and a generally
coarse thalweg occur in alluvial streams with different morphologies.
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Alternate Bars
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Fig. 3.7: Spatial variability of surface bed-material size on morphological units for meandering, straight,
and braided streams. Large dots indicate coarse bed-material size, small dots indicate fine sizes. Top plots
for each stream type show an empty streambed and the structure of the bar unit. Bottom plots show the
channels during low flow. Comparison with Fig. 3.2 helpsidentify bar units. (Modified from Whiting
(1996), by permission of John Wiley and Sons, Ltd.).
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The formation of well developed pool-riffle-bar triplets, or bar units, does not only require
a sufficiently large sediment supply and an appropriate stream gradient. Itisalso
important that the interaction between flow and sediment transport is not controlled by the
presence of large woody debris (LWD) or large boulders. Effects of LWD and boulders
on channel morphology and the spatial distribution of bed-material size are discussed in
Sections 3.2.4 and 3.2.5.

3.2.2.2 Riffle-related features: rapids, runs, glides, and pool-exit slopes

Riffles and pools, the two major constituents of the inundated part of the reach, can be
further segregated into geomorphological (or habitat) units (Fig. 3.8). The form and bed-
material size of riffles, and riffle-related features are discussed below. The relation
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Fig. 3.8: A spatially hierarchical representation of channel morphology units; w = stream width. (Slightly
modified from Church (1992), by permission of Blackwell Science, Ltd.)

between riffle and pool bed-material sizeisdiscussed in Section 3.2.2.3. The various
poolsindicated in Fig. 3.8 are caused by the presence of LWD that effectively controls
flow hydraulics and sedimentation within areach. Pools are therefore discussed in
Sections 3.2.4 and 3.2.5.
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Riffles, aswell asthe streambed area between pools and riffles can assume a variety of
morphologica formswith different flow dynamics and bed-material composition. Huvial
geomorphologists and fishery biologists distinguish between rapids, runs, and glides (e.g.,
Bisson et al. 1982; Church 1992), however, the terminology describing morphological
units may not be entirely identical between authors. The descriptions are summarized
below.

Rapids are steeper, contain larger particles, and have faster flow than riffles. How on
rifflesis usually subcritical (Froude number <1) during low flows, whereas much of the
flow over rapidsis generally critical, or supercritical (Froude number > 1). Riffles might
include a few untransportable large particles protruding through low flow, but these are
not organized into transverse ribs (Section 3.4.1), asthey tend to be on rapids. Riffles
have local gradients of less than 0.02, while rapids have local gradients of about 0.02-0.04
(Grant et al. 1990; Church 1992). Cascades are steeper than rapids, and are comprised of
cobbles and boulders. Small pools are common between large clasts.

Runs refer to stream segments with a straight downstream sloping bed surface (Platts et al.
1983) and relatively homogeneous bed material, similar to the plane-bed morphology
described by Montgomery and Buffington (1997, 1998), whereas riffles are sections of
locally steep gradient in the longitudinal stream profile. Compared to low flow conditions
on riffles, runs have deeper flows, and lower flow velocities.

The term glide is sometimes used synonymously with run. A glide may refer to the
transitional area between the deep part of the pool and the crest of the rifflein which
stream width increases while flow depth decreases (Bisson et al. 1981). Thistransitional
zone may be termed pool -exit-slope (Thompson et a. 1996), especialy if the stream
gradient is sloping upward over this area. Bed material on the glide or pool exit slope
tends to be less coarse than on the riffle crest. Church (1992) appliesthe term glideto a
former pool that has been completely filled with sediment. If adifferentiation is made
between runs and glides, glides have deeper flows and lower flow velocities than runs and
have a closer resemblance to pools than to riffles (i.e., a nearly horizontal water surface).

3.2.2.3 Coarsest parts of the reach: pools, riffles, and bar heads

In alluvial, free-formed streams, pools, riffle crests, and bar heads are generally the
coarsest areas in a stream reach. However, the relation of bed-material size between pools
and riffles, and riffles and bar heads varies depending on whether erosional or
depositional processes are predominant in forming the pool and riffle in a given bar unit.

Coarse pool sediment due to scour

During high flows, shear stressis often higher in pools than on riffles and scours all but
the coarsest sediment out of pools, leaving a coarse lag deposit behind. If pool scour is
the prevailing mechanism, then pools may be the coarsest parts of the streambed.

117



Coarse riffle deposits and scour of finer gravel

Feld measurements in gravel-bed rivers often show that riffles and not pools are the
coarsest locations within areach (e.g., Keller 1971; Richards 1976; Keller and Melhorn
1978, 1981; Lide 1979; Hirsch and Abrahams 1981; Campbell and Sidle 1985; Lide and
Made 1992, Keller and Horsheim 1993). This phenomenon is often attributed to the
reversal of velocity, or shear stress, during a high flow event, a concept introduced by
Keller (1971). During low flows, flow velocities are highest on riffles, and lowest in
pools, owing to the steep gradient and shallow flow depth on riffles, while pools are deep
and have alow stream gradient. During rising flows, flow velocity and bottom shear
stressincreases at a faster rate with discharge in pools than on riffles, so that at a certain
high flow of approximately bankfull, flow velocity is higher in poolsthan on riffles. This
high flow velocity scours and transports large particles from the pool, leaving a coarse lag
deposit behind. The largest particles removed from pools are likely to be deposited on
riffles where the flow velocity and shear stress are lower. Asflow beginsto wane, flow
velocity on rifflesis still lower than on pools, and falls bel ow the competence to transport
large particles before pools are affected, causing further deposition of coarse particleson
riffles. Riffle coarsening isfurther augmented during low flows because flow velocity
and shear stress do not drop as low onrifflesasin pools. This allows scouring fines off
riffles, leaving only the coarser and most stable particlesin place. The finer gravel
particles scoured off riffles are then deposited in pools (Bhowmik and Demissie 1982;
Yang 1971). Both deposition of coarse particles on riffles and subsequent scour of fines
can occur together (Campbell and Sidle 1985) and act on coarsening the riffle while fining
the pool.

Riffles are not always coarser than pools

Feld studies have not consistently verified the occurrence of velocity reversal and its
sedimentary consequences, (i.e., that riffles are coarser than pools). Velocity reversal may
occur at any discharge and is not necessarily limited to high flows around bankfull (e.g.,
Teleki 1972; Bhowmik and Demissie 1982; Carling 1991). Numerical modeling revealed
that velocity reversal requires that pools are hydraulically rougher (i.e., coarser) than
riffles, or that riffles are substantially wider than pools. The discharge at which velocity
reversal occurs decreased with increasing riffle spacing and increasing stream width.
Consequently, wide streams with wide riffle spacing and pools with coarse lag deposits
seem to be most likely to experience velocity reversal (Carling and Wood 1994). Detailed
measurements of flow patterns by Thompson et al. (1996) suggest that velocity reversal
requires the presence of arecirculating eddy in the pool.

Structural stability on riffles

Clifford (1993) observed that within a series of riffle-pool sequences, some riffles were
coarser than pools and some were not. Sear (1996) suggested that riffles do not need to be
coarser than pools for purposes of stability, but that riffles maintain their stability by
having structural elements, such as clusters, particle interlocking, and imbrication (Fig.
3.9). Clustersdissipate flow energy by creating turbulence, while imbrication and particle
interlocking delay sediment entrainment by minimizing the particle area exposed
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to flow, and by high pivot angles. The presence of such structural features should
therefore be recorded when sampling bed-material (see Section 3.4).
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Fig. 3.9: Model of bed material properties and bedload parameters in ariffle-pool sequence. + = very,
-ive = negative, L = particle transport distance, V= particle transport velocity, Relative exposure of Dsgg
particle = within the bed material. (Reprinted from Sear (1996), by permission of John Wiley and Sons,
Ltd.).

Deposition of finesin pools

Pool fining can become quite pronounced in streams with a high supply of sand and silt-
sized sediment that is transported at low flow and deposited over the coarse bottom
sediment in pools. Rifflesare relatively unaffected by low flow sand transport because
the higher flow velocities prevent deposition. Pool fines may cover the pool bottom asa
thin veneer or fill asubstantial portion of the pool volume (Lisle and Hilton 1992, 1999;
Hilton and Lidle 1993). Sampling fine sediment in poolsis discussed in Section 6.6.2.

Rifflesand bar heads

Riffles and the upstream end of bars may be of similar coarseness if sediment supply is
equal to the capacity of the stream to transport it or if sediment supply exceeds the
transport capacity. If sediment supply is generally less than transport capacity, coarse
gravel particlestend to be scoured off the riffle, leaving only the coarsest particlesas a
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lag deposit, whereas the bar head sediment remains unchanged. Thisincreasesthe
difference in bed-material size between riffles and bar heads.

Lateral variability on rifflesand runs

Some riffles do not have significant spatial variability of particle sizes; this homogeneity
makes riffles preferred sampling locations, in spite of being submerged by flow.
However, not al riffles have homogeneous particle size-distributions. The patterns of
bottom flow near the bar can also lead to lateral variability of the particle size on riffles,
particularly if the downstream spacing between barsistight. In this case, riffle bed-
material tends to be coarse between the thalweg and the side of the riffle that mergesinto
the upstream end of the downstream bar, and finer at the opposite bank close to the next
bar upstream.

A common form of lateral variability is bankward fining that may occur in any cross-
section with self-formed banks. Bankward fining is not only due to gravel particles
becoming finer towards the banks, but also due to the deposition of sand in the area
between the low-flow and the high-flow bank line, whereas most of the mid-channel
streambed is sandless. Thus, bed-material samples collected between the high-flow water
lines of both banks often produce afiner bed-material size than sampling within the
borders of the low-flow water line. Careful scrutiny of the sampling objectives should
help deciding whether sampling should extend to the low-flow or the high-flow water
line.

Table 3.2 summarizes features of bedform morphology, flow, and patterns of bed-material
sizefor riffles, pools, and bars in C-type streams with riffle4pool morphology. Note that
the transition between the upstream end of the bar and theriffle, as well as between the
downstream end of the pool and the upstream end of the riffle can be smooth without any
recogni zable morphological boundaries.

An example of the spatial variability of bed-material particle sizes within ariffle-pool
reach isprovided by Lisle and Made (1992) (Fig. 3.10). Generally, bed materia is
coarsest on riffles, and bar heads, both in the aggrading and degrading reach, while pools
have deposits of fines. However, irregularities and patchinessin the spatial patterns of
bed-material size may obscure underlying schematic spatial patterns of bed-material size.

120



Table 3.2: Morphological, hydraulic, and sedimentary features characteristic of riffles, pools and bars
during low and high flows in C-type streams with riffle-pool morphology

Criterion Riffles Pool Bar

Longitudinal form ridge, or locally depression, or evenly inclined, but less
Steep locally flat steep than thalweg

Cross-section shape + symmetrical or asymmetrical asymmetrical
asymmetrical

Low flow situation

Flow depth shallow deep mostly exposed

Flow velocity relatively fast relatively slow na

Water surface locally steep and rippled nearly horizontal, smooth na

Stream width wide narrow na

Bed-material size

Surface fines
Spatid variability

Structura elements

High flow situation

Flow depth

Flow velocity
Water surface
Stream width
Bed-material size

Surface fines

coarse scour lag

not likely

clusters, wedging, imbric.

shallow

dow

coarse scour lag, or
deposit of fines

possible
lateral & longitudinal
wedging, imbrication

deep
fast

evenly inclined over the reach

coarse deposit

not likely

+ even over thereach

transition from coarse
to fine

possible

clustering & imbrication

shallow

sow

coarse scour lag

not likely

transition from coarse
to fine

possible
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Fig. 3.10: Spatia variahility of bed-material sediment sizesin a degrading (a) and aggrading (b) riffle-pool
reach of Redwood Creek, northern California. (Reprinted from Lise and Madej (1992), by permission of
John Wiley and Sons, Ltd.).

3.2.3 Stream morphology and particle-sizes in B-type and A-type streams

Riffle-pool sequences and bar unitstypical of C-type streams with riffle-pool morphol ogy
(Section 1.3.1 and 1.3.2) and gradients within the range of about 0.001 to 0.02 become
less well developed as the stream gradient steepens and stream morphol ogy approaches a
plane-bed in B-type streams with gradients of 0.01 or 0.02. Steep C-type streamstend to
have only intermittent sequences of riffle-pool units, whereas |low-gradient B-type streams
tend to have only afew pools interspersed in a plane-bed morphology consisting largely
of runs. Gravel bars as sediment storage features are poorly devel oped, because transport
capacity often exceeds sediment supply. The few bars present have irregular forms, are
tied to locations of stream widening, and occur isolated and non-sequential. Thus, free-
formed pools and bars are rare in plane-bed streams with gradients around 0.01-0.03
(Montgomery and Buffington 1993). Most of the streambed could be classified asarun
with little spatial variability in bed-material particle size beyond landward fining towards
the bankline. Thisrelative homogeneity in bed-material particle size isafactor that
makes bed-material sampling easy in plane-bed streams. However, thiseaseis
counteracted by the difficulty of extracting the large and often wedged particles off the
streambed.
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The morphology of step-pool or A-type streams (Section 1.3.1 and 1.3.2) is a sequence of
steep steps composed of cobbles and boulders that alternate with pools of finer bed
material (Montgomery and Buffington 1997; 1998, Church 1992; Section 1.3.1). Thus,
step-pool streams have a systematic longitudinal sorting. The lateral variability is mostly
random (Fig. 3.11). Bed-material sampling in step-pool streamsis difficult for several
reasons. Particles comprising steps are often large, tightly wedged, and cannot be
extracted from the bed. Large particles also require alarge spacing between individual
sampling points of pebble countsto avoid serial correlation (Section 4.1.1.4). The
requirement for large spacing extends sampling over along stream distance because most
step-pool streams are only afew meterswide. Individual steps or pools are too small to
provide an adequately large sample size. Therefore, several steps and pools have to be
sampled. Many of the step-forming particles can be transported only by catastrophically
large floods. The researcher needsto decide the largest boulder size that should be
included in the sample.

Fig. 3.11: Longitudinal and plan view of a step-pool stream. (Reprinted from Church (1992), by
permission of Blackwell Science, Ltd).

3.2.4 Effect of large woody debris and other stream blockages on stream
morphology and particle sizes

The presence of large woody debris (LWD), debris flow or landside deposits, and beaver
damsin streams affect the sediment-transport dynamicsin streams, the channel
morphology, and the spatial distribution of sediment size in various spatial scales. LWD
or other material can block the downstream bedload conveyance entirely or partially.
Thismay lead to the deposition of coarse sediment upstream of the blockages, of fine
sediment in areas of backwater or water ponding, and to coarse lag depositsin scour and
plunge pools. Reaches downstream of the obstruction may be cut off from sediment
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supply and become degraded. Even isolated pieces of LWD or large boulders may alter
the local flow field and affect stream morphology and particle sizesin their vicinity.

Large-scale effects. upstream sediment wedge and downstream scour

A log jam consisting of several large tree trunks and finer woody debris can effectively
block the downstream conveyance of sediment. Blockage causes the deposition of
bedload sediment on the upstream side. The alluvial wedge (Fig. 3.12 a) resulting from
this deposition may extend over a distance of several 100 m. The channel gradient
upstream of the log jam decreases as the alluvial wedge startsto grow, so that particle
sizes deposited close to the log jam become finer over time. The downstream side of the
log jam receives no sediment from upstream. Thus, excess shear stress winnows sand and
gravel particles from the bed until only large particles that are commonly untransportable
are left on the bed as a coarse lag deposit or erosion pavement (Rice 1994, 1995; Rice and
Church 1996a; Buffington and Montgomery 1999b). Depending on the duration of the
log jam, the downstream erosion pavement may extend over a 100 m or more as well.
Some log jams are long-lived, and remain in place for decades depending on the rotting
resistance of the wood. Eventually, asthe log jam begins to deteriorate, it becomes
increasingly permeable to sediment. Sediment starts to be scoured off the upstream
deposit which then coarsens over time. The downstream bed starts to become finer asthe
lag deposit is replenished with upstream supply. Not all log jams are long-lived. Some
log jams shift annually, causing an annual change in the morphology and particle-size
distribution of the streambed.

Medium-scale morphological and sedimentary effects

Channel blockage may also affect stream morphology and particle sizesin the medium
scale of several meters. One or afew logs blocking a stream may cause upstream
deposition of relatively coarse bedload (Fig. 3.12 b). A plunge pool may form at the
downstream side if flow overtops the channel obstruction (Thompson 1995; Montgomery
et al. 1995; Montgomery and Buffington 1997, 1998). The plunging water islikely to
scour all but the largest particles, leaving a coarse erosion pavement. Fne sediment might
deposit in the backwater area of plunge pools during low flows, or flow in plunge pools
may be continually large enough to winnow all fines. Downstream degradation of the bed
does not occur when bedload passes over the obstruction after having filled the upstream
void. A closely-spaced sequence of large woody debris pieces extending over the width
of the stream may produce a sequence of log steps (forced step-pool channel) (Fig. 3.12
C).

If the stream blockage extends high above the water surface and if the sediment supply
from upstream is low, a dammed pool may form on the upstream side of log jams (Bisson
et al. 1981; Thompson 1995). Dammed pools may have only small deposits of fines or
may become filled with sediment given enough time (Fig. 3.12 d).
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The stream bl ockage does not have to be complete to have a pronounced morphological
and sedimentary effect on the stream. Partial blockage of the downstream sediment
conveyance by individual pieces of large woody debris interrupts the necessary three-
dimensional patterns of flow and disturbs the formation of riffle-pool sequences. A piece
of LWD extending from the banks partially into the stream may have a deposit of
relatively coarse sediment on the upstream side, while finer sediment is deposited in the
backwater area on the downstream side (Fig. 3.12 €). A coarse-bottomed scour pool with
a coarse lag deposit may develop where a piece of LWD confines or constricts the flow
within the cross-section (Fig. 3.12 f, seealso Fig. 3.12 €). A backwater pool with deposits
of fine sediment may be created in the backwater area of alog (Fig. 3.12 g).

Chaotic patterns of bed-material size

The presence of LWD may erase any apparent systematic patternsin spatial variability of
bed material size (Buffington and Montgomery 1999b) (Fig. 3.13). The resulting patchy
appearance of bed-material size hasimplications for bed material sampling locations and
sampling schemes.

Gy Dsp=23.7 mm, a,=1.04 ¢ @ Debris pile (brunches, wood chips)

G fregiime 50=8.4 mm, 0,=0.93 g * On-bank tree projecting into channel

5, Dsg=2. .
8, Dsg2 0 mm Contour interval=0.1 m

7., Dgp=0.063 mm 0 5 10
/ Discrete logs, rootwads :

mcters

Fig. 3.13: Stream morphology and chaotic patterns of bed-material particle size in a stream containing a
large amount of large woody debris. Flow direction is from left to right. G = gravel (see Section 4.1.3.4 for
more detailed definition of facies descriptions), S= sand, and Z = silt; gy = Inman (1952) sorting coefficient
(Section 2.1.5.4). (Reprinted from Buffington and Montgomery (1999b), by permission of the American
Geophysical Union).
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If possible, reaches with LWD should be avoided when sampling bed-material with the
aim of characterizing areach. A reach that consistently displays a particular stream type
with its recurring features of fluvial geomorphology should be selected instead. However,
some streams, especially in the Pacific Northwest, consist of a sequence of log jams and
are continually loaded with large woody debris. If such streams need to be sampled, it is
important to identify the sedimentary processes and the resulting sedimentary units. That
knowledge forms the basis for selecting which of the sedimentary units to sample, and for
determining how they are to be included in the sampling project.

3.2.5 Bed-material particle sizes around boulders

Isolated boulders supplied from rockfall or unearthed from glacial deposits likewise cause
complicated local hydraulic conditionsin their vicinity and thus affect the bed
morphology and the spatial variability of bed-material size.

Coarse sediment may be deposited on the upstream side of boulders. Coarse-bottomed
plunge pools may form where flow overtops logs or boulders. Coarse-bottomed scour
poolsform if flow is confined vertically or laterally by logs or boulders and scours the
adjacent stream bed (Bisson et al. 1981, 1987; Sullivan et al. 1987; Church 1992; Wood-
Smith and Buffington 1996). A horse-shoe vortex scour may form at the upstream side
of boulders, while fine sediment is deposited in the downstream wake (Section 3.4.4).
Boulders or logs may also create backwater in which fine sediment is deposited.

It isimportant to understand the sedimentary processesin the vicinity of untransportable
stream objects. This understanding helpsto evaluate whether sediment from the vicinity
of bouldersis representative or appropriate for sampling. The presence of untransportable
large boulders also poses the question of whether or not to include these bouldersin a
particle-size analysis. The answer depends on the specific questions of the sampling
project. If, for example, local channel form roughnessis to be determined, immobile
boulders need to be included.

How around immobile boulders diss pates energy which otherwise may have been

utilized for transporting coarse bedload. Thus, immobile boulders may also have an effect
on the general bed-material size of the reach, causing perhaps less coarse and less armored
deposits than would develop were the boulders not present (Buffington and Montgomery
1999b). Immobile boulders might also cause flow confinement and scour, leading to a
coarse lag deposit and a bed coarser than if the boulders were absent. Thus, if boulders
are expected to cause general bed fining or coarsening, both the mobile and the immobile
bed material should be sampled. Immobile boulders are usually not included in a
sampling project if the bed-material size analysisis used to compute bedload transport
rates.
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3.3 Vertical variability in bed-material size

Gravel deposits can have a variety of different vertical structures depending on the supply
of transportable sediment in the streambed, the bed-material particle-size distribution, and
the interaction with the hydraulics of flow. Various processes causing a vertical structure
(stratification) in the bed-material of gravel-bed streams are discussed in Section 3.3.1.
Implications for sampling are discussed in Section 3.3.2.

3.3.1 Sedimentary processes causing vertical stratification

Three distinct particle-size distributions are commonly observed in gravel-bed rivers:

(1) Coarse gravel distributions are often skewed towards fines and have a median particle
size of 32 to 64 mm. The median particle size of the coarse part is cobbles, whereas the
median size class of the fine part is medium gravel. (2) Cobble distributions without
much fine and medium gravel have a median particle size in the cobble range. (3) Fine
gravel distributions with mostly medium gravel and sand and only afew coarse gravel
particles and cobbles. Even within one stream location, the bed-material particle-size
distribution may change over time, owing to a change in sediment supply or hydraulics of
flow. These changes are reflected in the vertical profile of the streambed sediment.

The vertical profile of a streambed usually shows that particle-size distributions do not
change gradually with depth, but change abruptly in the form of layers (or strata). The
particle-size distribution in each layer isthe result of an interaction between flow
hydraulics and sediment. The strata can therefore be used to obtain information on the
amount of sediment supplied to the stream, the sediment particles sizes, and the manner in
which the sediment was transported and deposited. Although the interpretation of the
sedimentation processes may not always be straight forward in a given strata, an analysis
of the sequence of the strata can provide information of the temporal sequence of flow and
sediment interactions. An analysis, for example, may show an increase in the fine
sediment supply and that result may be important for protecting agquatic habitat or for
streambed monitoring of watershed management effects. Implications of stratified
sediment for bed-material sampling are discussed in Section 3.3.2.

One example of a sediment strata is the framework-supported gravel deposit (Fig. 3.14 a).
It forms when fine sediment is relatively scarce so that large, adjunct particlestouch. If
fines exceed about 20-30% of the sediment volume (which is roughly the volume of the
voids between large clasts) large particles no longer touch, and the deposit startsto
become matrix-supported (Fig. 3.14 d).

A frequently observed stratification feature in gravel-bed riversisthat the surface
sediment is coarser than the subsurface sediment (Fig. 3.14 a). Surface coarsening (as
opposed to subsurface fining) is attributed to three different processes: (1) selective scour
of fines (erosion pavement), (2) selective deposition of large particles, or (3) armoring to
facilitate equal mobility transport. These processes are discussed in Section 3.3.1.1.
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Another example of stratified bed material isthefilled gravel (Fig. 3.14 c). The presence
of gravel with empty voidsin the underlying strata supports the interpretation that fine

{a) Framewaork gravel
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Fig. 3.14: Typical bedding and grain-size distribution curves for fluvial gravel. Note the hatched surface
particlesin the top figure. Only those particles are part of a surface sample. The armor layer with a
thickness d in Fig. 3.14 a extends from the surface down to a depth defined by the deepest reaching particle
in the sampling area. (Reprinted from Church et al. (1987), by permission of John Wiley and Sons, Ltd).
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sediment infiltrated into adeposit of originally coarse gravel. Two main mechanisms
have been identified which cause an infiltration of finesinto a coarse open framework.
These are discussed in Section 3.3.1.2.

Another example of stratification in gravel-beds is a censored layer of coarse gravel, one
or several particle sizes thick, in which the voids are free of fines (Carling and Reader
1982) (Fig. 3.14 b). The presence of voidsfilled with fines in the strata below leads to the
interpretation of initial scour, followed by either a preferential deposition of coarse
particles, or by vertical winnowing (piping) of fines that leaves coarse gravel behind.

3.3.1.1 The coarse surface layer: armoring and pavement

Many gravel-bed rivers have surface sediment that is coarser than the subsurface sediment
(Fig. 3.14 @). Three processes are attributed to surface coarsening (as opposed to
subsurface fining):

» selective scour of fines (erosion pavement),
» selective deposition of large particles, or
» armoring to facilitate equal mobility transport.

Selective scour of fines

Selective winnowing of fines from the surface leaves a coarse lag deposit on the surface
about one particle diameter thick. The reasons for surface winnowing can be decreased
sediment supply, and/or increased flow. Long-term coarsening of the surface occursin
the absence of sediment supply on the downstream side of log jams (Section 3.2.4), in
plunge and scour pools, or below reservoir dams (erosion pavement).

Selective deposition of large particles

Selective deposition of coarse particles with surface coarsening occurs when waning
flows are no longer competent to transport the largest particles - which then begin to
settle. The supply of fine particles may be low, at least during flows at which they would
settle.

Armoring to facilitate equal mobility transport

Another explanation for the formation of a coarse surface armor isthat a coarse surfaceis
the prerequisite for equal mobility transport of coarse and fine particles (Parker et al.
1982; Andrews and Parker 1987). If the surface was not armored (i.e., surface and
subsurface particle size were the same), coarse particles would move less frequently than
fine particles. Bedload then has a finer distribution than the bed sediment. The frequently
observed similarity between the size distribution of bedload and the subsurface sediment
requires that the mobility of coarse particlesisincreased, while the mobility of small
particlesis decreased. This mechanism can be facilitated by the presence of a coarse
armor layer in which coarse particles are exposed to the surface that provides them
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with an increased chance of transport. Fine particles are hidden below the surface where
their transport probability is diminished. Thus, the preferential exposure of larger
particlesin the armor layer acts to equalize the mobility of coarse and fine particles and
eliminates most of the differencesin the mobility of small and large particle sizes.

A coarse surface layer can be termed armor or pavement. In the terminology used by
Sutherland (1987), armoring refers to episodic surface coarsening when, over the course
of commonly occurring high flows, large particles have a chance to be mobile, albeit
infrequently. By contrast, pavement refers to static conditions under which the largest
particles are immobile given the prevailing flow regime and sediment supply. Andrews
and Parker (1987) use the terminology in the opposite way: pavement is the coarse bed
that devel ops to achieve equal mobility, whereas armor denotes a coarse and static lag
deposit. Since the terms armor and pavement are not used consistently in the literature,
the reader needs to determine the exact meaning of the terms armor or pavement in any
given context. Thistext follows the terminology by Sutherland (1987): armor is mobile
and pavement is static.

A surface armor is less devel oped in streams where transport capacity (i.e., the largest
amount of bedload that a given stream reach can transport) equals the amount of sediment
supplied to thereach. Thisiscommon in braided streams. The particle-size distributions
of surface, or armor layer, and subsurface sediment are relatively similar under these
conditions. Transport capacity is often larger than sediment supply, and a coarse surface
armor becomes prominent. This situation is common in many armored gravel-bed
streams. High energy mountain streams usually have high transport capacity but low
sediment supply which leads to the formation of an erosion pavement that may only be
mobilized by the largest floods.

The degree of armoring may be quantified by the ratio of the Dsy surface sediment size to
the Dso subsurface sediment size. Thisratio approaches a value close to 1 in streams with
high sediment supply, whereas streams in which transport capacity exceeds sediment
supply, the ratio approaches a factor of approximately 2. The ratio of Dsosyri/Dsosuy May
reach values of 3 or more in high-energy mountain streams or when sediment supply is
completely shut off and an immobile, coarse lag deposit forms. For example, such
conditions are found below reservoir dams. High valuesin the ratio of Dsgsyrt/Dsosub Mmay
also be produced by the presence of untransportable, large particles supplied to the stream
from non-fluvial sources (rockfall, exhumed boulders), or in the presence of censored
layers (Fig. 3.14 d). The surface sediment may also be finer than the subsurface sediment,
for example, when a high supply of fine sediment covers the surface. This may decrease
the Dsosuri/ Dsosub ratio to values below 1. (See also Sections 6.1.6.2 and 6.5.2 for the ratio
surface/subsurface sediment size).

3.3.1.2 Mechanisms of fine sediment intrusion into open framework gravel

Research on fish spawning habitat has identified two main mechanisms for fine sediment
intrusion into framework gravel with open pores: infiltration based on gravity and
intrusion of fine sediment by interstitial flows. In gravity-based infiltration, fine gravel
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and sand moving over the bed surface as bedload becomes trapped between large particles
and fallsinto the voids between surface particles. The rate of fine sediment infiltration
increases with the supply of fine-sized bedload, and with the number and size of open
pores. Fine sediment intrusion is due to downwelling flows that bring fine particles from
suspended sediment into the pore space (Alonso 1993). The rate of fine-sediment
intrusion increases with the concentration of suspended sediment, the severity of
downwelling, the size and number of open pore spaces, and the rate of interstitial flows
(Lauck et al. 1993).

Fne sediment intrusion into a non-stratified deposit of coarse gravel can cause different
vertical stratification, depending on the intragravel pore sizes and the size of the
infiltrating particles. If the infiltrating particles are finer than the intragravel pores, the
infiltrating sediment fills the pore space from the bottom up, causing no pronounced
vertical variation of infilled particle sizes. If the fine sediment is a mixture of silt, sand
and fine gravel, fine gravel can eventually seal the pore spaces near the surface and
prevent finer sediment from infiltrating into deeper pores. Depending on how fast the
near-surface pore space is sealed, there can be a gradually upward coarsening of the
infiltrated fines, or alayer below the surface that is free of infilled fines.

3.3.2 Implications of vertical stratification for bed-material sampling

When sampling bed material that is vertically stratified, it isimportant to distinguish
between different strata because each stratum represents different channel-bed processes.
Sampling and analyzing each strataindividually is not only important for analyzing
sedimentation processes, but also for analyzing the habitat of aquatic ecosystems (Bjornn
and Reiser 1991; Montgomery et al. 1996) or for monitoring a change in fine sediment
supplied to the stream following a change in watershed management.

The guestion arises whether sediment strata have a fixed thickness and to what thickness
strata should be sampled. The short answer is that some strata have arelatively fixed
thickness, while the thickness of other stratais variable.

Surface coarsening (Fig, 3.14 aand Section 3.3.1.1) affects not only the immediate
sediment surface, but the armor layer that extends from the surface down to
approximately the depth of some large surface-particle size, e.g., the Doy Size. Thus, one
could sample surface particles (pebble counts, Section 4.1.1; areal samples, Section 4.1.3)
or take a volumetric sample of the armor layer (Section 4.2.1). The depth to which
surface fining extends downward into the bed (Fig. 3.14 ¢) depends on how deeply the
fines have infiltrated the bed (Section 3.3.1.2). Similarly, the thickness of censored
gravel (Fig. 3.14 b) depends on the duration and magnitude of the sedimentary processes.
The exact depth of sediment strata can only be determined by digging gravel pits or by
taking core samples. All sediment layers below the surface are sampled volumetrically
(Section 4.2.2 - 4.2.4).
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3.4 Bed-surface structures

Bed surface-structures are arrangements of particles into groups of various sizes or
arrangements of particlesinto a particular packing, or a combination of both. These
arrangements are caused by the interaction between flow hydraulics and particles. Bed
surface-structures may either cause small-scale or local variations of bed-material size, or
form beds with little variation in particle size.

Bed-surface structures may cause problems for bed-material sampling. Surface structures
require alarge spacing between sampling points, and extracting a particle out of a surface
structure may be difficult. Particlesinvolved in surface structures are partially hidden
from view, which complicates visual and photographic methods of bed-material size
analysis. The presence of any bed-surface structures should be recorded in the sampling
notes because bed-surface structures can either increase or decrease erosion thresholds
and hydraulic roughness.

Bed-surface structures may have atransverse or longitudinal orientation in the stream.
They may cover much of areach, or occur spatially isolated. Various forms of bed-
surface structures are introduced in Section 3.4.1 — 3.4.6. Implications for bed-material
sampling are discussed in Section 3.4.7.

3.4.1 Transverse and longitudinal bedforms

Large particles transported in arelatively steep stream during a major flood event with
high sediment supply produce several kinds of bedforms during deposition. The general
mechanism is that the largest particles settle first and control the deposition of other large
and small particlesin their vicinity.

Transver se clast dams have alobate front of large, loosely fitted and well-sorted clasts.
After the coarse lobe front is deposited, finer sediment deposits on the upstream end of the
dam (backfill) (Bluck 1987; Krumbein 1940, 1942). Clast dams may vary in size. They
may be up to 1 m high or more, and several m or even several 10 m wide and long. The
largest particles in the clast dam may reach cobble and boulder size. Height, width, the
largest particles, and length of the dam (or spacing between dams) are related. The dam
length is approximately equal to the dam width, about 5 times longer than the dam height,
and 5 - 7 times the diameter of the largest clast in the dam. Dam width is approximately 5
times the dam height, and the height is 2 to 0.8 times the largest clast size. Height and
width of the dam fronts increase with the magnitude of the flood event. The backfill that
consists of finer sediment than the coarse clast dam typically coarsens towards the dam.
Fines at the upstream end of the backfill can form as a wake deposit from the next front
upstream (Fig. 3.15). The largest particle within alobe is usually not found in the lobe
front, but in the backfill. Large particles may destroy the front while passing over it. The
height and length of transverse clast dams typically decrease in a downstream direction,
and the decrease is more pronounced in steeper channels. Transverse clast damsare
found in streams with gradients larger than 1%.
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Fig. 3.15: Side view (@) and oblique view (b) of atransverse clast dam. h isthe height of the bedform, wis
the width, and | isthe length.

Transver se ribs are sequences of regularly spaced ridge-like deposits of coarse particles
that are transverse to flow (McDonald and Banerjee 1971; Boothroyd and Ashley, 1975;
Koster 1978) (Fig. 3.16). Particlesthat form the ribs are oriented with their a-axes
perpendicular to flow, and dip upstream along the a-b particle plane (Fig. 3.16). The
coarsest particles within ribs are on the downstream side, and individual particlesare
often imbricated (Section 3.4.2). Height, width, length and particle size of transverse
ridges are related. The rib height equals about one large particle, the widthis 2 - 4 large
particles, and the length 5 - 10 large particles. Width and length decrease with stream
gradient. The area between the ribs contains finer sediment and sometimes fine sand.
This difference in particle sizes makes the presence of the ribs recognizable. Transverse
ribs are not restricted to steep channels, but can form on any locally steep depositional
surfaces with shallow but high-energy flow. Koster (1978) suggests that transverse ribs
form when flow over standing and upstream braking waves starts to wane and interprets
transverse ribs as relict antidunes.

Longitudinal clast ribs are elongated ribs that form in steep channel sections when large
particles are arranged parallel to flow (Bluck 1978). Longitudinal clast ribs may be
several meterslong and up to 1 m high. Particlesin longitudinal clast ribs are well sorted,
imbricated, and not longitudinally graded.
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Fig. 3.16: Sequence of transverse ribsin (a) oblique view, and (b) side view.

Boulder and cobble ber ms are elongated deposits in the direction of flow, often curved,
and commonly found in wide bends following a more constricted channel upstream.
Boulder and cobble berms may form parallel ridges and contain negligible amounts of
fine sediment. Boulder and cobble berms develop during turbulent overbank flow with
high Froude numbers' and alarge supply of coarse sediment when part of the flow turns
upstream near the stream bank (Carling 1989).

Bedload or gravel sheetsare alayer of particles with athickness of 1 —2 coarse
particles. Bedload or gravel sheetstravel downstream during flow events with high
sediment supply. Coarse particles form the leading edge of this bedform that is much
longer than it is high, and fine particles trail behind. Bedload sheets require a proper
mixture of fine and coarse gravel. The formation of bedload sheets starts when several
large bedload particles come to rest on arough bed surface. Fine sediment passes over the
accumulation of coarse particles, and fillsintersticesin front of the deposited coarse
particles. The smooth surface of fines decreases roughness and increases drag on the
coarse particles. This action remobilizes the coarse particles which then travel
downstream over a surface of fine particles until coming to rest on the next rough bed-
surface downstream (Iseya and Ikeda 1987; Whiting et al. 1988). Migrating bedload
sheets travel in sequences and form a bed surface with alternately coarse and fine strips
that may extend over much of the stream width. If bedload sheets are preserved during
low flow, the alternate strips of coarse and fine sediment form a pattern of longitudinal

Y Froude number F = \/V_d , v = flow velocity, g = acceleration due to gravity, and d = depth of flow. F>1 = supercritical
g .

flow.
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sorting on the bed (Fig. 3.17). Bedload transport rates measured during the passage of a
bedload sheet are very high.

Side view
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Fig. 3.17: Deposit from a bedload sheet with coarse front and fining towards the tail. Flow is from left to
right. The downstream distance of the bedload sheet is about 0.8 m. (Reprinted from Whiting et al. (1988),
by permission of the Geological Society of America).

Stone cells are bed-material patterns that may form in streams with relatively low bedload
supply as ameans of bed stability (Church et al. 1998). Stone cells are curved ridges of
large particles. The ridges are transversely oriented and may face upstream or
downstream, giving the impression of a coarse-grained ring around a cell filled by finer
sediment. The development of a stone cell begins with the random deposition of the
largest particles. Other large particles are then deposited in their vicinity.

3.4.2 Imbrication

Another form of bed-surface structure refersto the packing of particles of similar sizes.
Imbrication is a shingle-like deposit in which the upstream particle partially overlapsits
downstream neighbor. Hat particles of similar size are most susceptible to form
imbricated surfaces. Imbrication can be limited to afew particles within a cluster (see
below), be part of linear features such as longitudinal clast ribs (see above), or cover large
streambed areas. Imbrication can be classified by the position of the three particle axesin
relation to flow (Todd 1996). Particles set in motion by fluid forcesroll about their a-axis
(longest axis) in contact with the bed and are arrested by the particle in front. The a-axis
istransverse to the flow, and imbrication occurs along the b-axis (Fig. 3.18). The
thickness of the imbricated layer comprises 1 - 2 particles. Imbrication along the b-axisis
characteristic of relatively low transport rates.

In streams with high bedload transport rates associated with traction carpets or debris
flows, imbrication occurs aong the particle a-axis, and the a-axisis parallel to flow (Fg.
3.18). Thisindicatesthat particles move by diding and with grain-to-grain contact.
Particles imbricated along the a-axis are separated from each other by finer matrix
sediment. Both imbrication structures pose a high erosion threshold.
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Fig. 3.18: Imbrication along the b-axis with the a-axis transverse to flow, characteristic of individual
particle movement in fluid flows and low to moderate bedload transport rates (left); imbrication along the a-
axis with the a-axis parallel to flow, characteristic of grain-to-grain interaction during high intensity
sediment transport such as traction carpets and debris flows (right). Side views (top), and oblique views
(bottom). (Redrawn from Todd (1996), by permission of John Wiley and Sons, Ltd.).

3.4.3 Clustering

A particle cluster is an accumulation of afew coarse particles on the upstream side of a
large particle and is formed when alarge obstacle clast comes to rest and one or more
particles lean against the upstream side of it. Finer particles often accumulate in the wake
downstream of the obstacle clast due to the inward-curling eddies of the flow separation
zone (Brayshaw, 1984; Naden and Brayshaw 1987; Reid et a. 1992) (Fig. 3.19 aand b).
Clusters with stoss and wake deposit are called complete clusters. The length of the wake
deposit increases with the size of the obstacle clast. However, the wake deposit may be
absent if the obstacle clast has a pointed shape or is aligned parallel to the direction of
flow (De Jong 1992) (Fig. 3.19 ¢). Clusters without wake deposits are called incomplete
clusters.

Clusters can be comprised of two or more particles, be one or more particles wide, and
form one or several distinct rows of particles. Clusters can be solitary features, or form
ribs that extend transversely, diagonally, or in lobate orientation across the stream.
Clusters can also cover the streambed or parts of it in rhombic patterns (De Jong and
Ergenzinger 1995).
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Fig. 3.19: Cross-sectional (a) and plan view (b) of a complete particle cluster with stoss and wake deposit.
Flowlines form inward-curling eddies in the wake of the obstacle clast where fine sediment is deposited.
(Reprinted from Brayshaw (1984), by permission of the Canadian Society of Petroleum Geologists).
Incomplete cluster without wake deposit of fines ().

3.4.4 Horseshoe vortex scour

Horseshoe vortex scour is scour around the upstream side of an immobile object and
deposition of the scoured sediment at the downstream side. Thisform of scour is usually
associated with scour around bridge piers, but it also devel ops around any large immobile
obstacle surrounded by erodible finer sediment. Asflow increases above athreshold, a
helical vortex develops at the upstream side of the object and scours a semicircular trench.
Fine sediment scoured from the trench as well as sediment from upstream that is
transported through the scour trench is deposited by the inward-curling wake eddy on the
downstream side of the obstacle (Fig. 3.20) (Bunte and Poesen 1994). Although
horseshoe vortex scour is most prominent in sandy environments (e.g., around pebbles on
a sandy streambed or sea shells on a sandy beach), it can also occur around bouldersin a
gravel streambed.

Horseshoe vortex scour increases particle mobility, because particles begin to be scoured

from the vortex at flows much lower than needed for particles entrainment from the bed in
the absence of horseshoe vortex erosion.
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Fig. 3.20: Horseshoe vortex scour around a pebble in a sandy matrix: profile view and moderate flow
intensity (top); plan view and moderate flow intensity (center); plan view and high flow intensity (bottom).
(Reprinted from Bunte and Poesen (1994), by permission of John Wiley and Sons, Ltd.).

The sizes of particlesin wake deposits are affected by the intensity of the local hydraulics
around the obstacle. Sand transported over the bed during low flows may be deposited in
the boulder wake, whereas during higher flows the material scoured in the vortex is
deposited.

3.4.5 Cobble embeddedness and protrusion

Embeddedness refers to the position of alarge particle relative to the plane of the bed.

A large particle that is partially buried in finer sediment is said to be embedded. The
degree to which a particle is embedded is called embeddedness. Embeddednessisa
parameter used particularly by fisheries biologists to quantify the abundance of fine
sediment in astreambed. The particle sizes that constitute large and fine sediment depend
on the study objective and the channelbed conditions. According to Burns and
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Edwards (1985), embedded particlestypically have a-axes lengths of 45 to 300 mm,
whereas the size of the finer sediment in which large particles are embedded is smaller
than 6.3 mm. Embeddedness can occur throughout a reach of concern or be restricted to
areas where local hydraulicslead to local deposition of fines.

Several methods may be employed to describe the degree of cobble embeddedness
(MacDonald et a. 1991). Embeddedness (E) isthe ratio of total vertical extent of a
particle D; to the vertical extent of the particle below the bed surface, i.e., the embedded
portion of the particle De, so that E =D/De (Fig. 3.21 a).

A.
Water
calumn
Fine » o8t 1 ’ p Plane of
';cdilrrrltcnt g 5 » embeddedness
B.
Water
column
Fine -0 v —_  Plane of
sediment . embeddedness
C.

Plane of
ambeddedness

Fig. 3.21 a-c: Three methods of quantifying cobble embeddedness: Embeddedness E = D¢/D, where D; =
total vertical extent of a particle, and D, = embedded vertical extent of a particle (a); Free particle space
where Dy isthe height of particle protrusion above the bed (b); Percentage of free matrix particles (c).
(Slightly modified from MacDonald et al. (1991); source: Burns and Edwards (1985)).

Alternatively, free particle space, or protrusion Ds is the height by which a particle
extends above the bed surface. Embeddedness and free particle space are related by D =
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D: - De (Fig. 3.21 b). Free particle space can also be expressed as an interstitial space
index by computing >~D;/A, where A isthe sampling area. To account for the high
variability of individual measurements, the index can be computed by summing measured
protrusion heights Ds and dividing by the sampled area, which istypically acircle with a
diameter of 60 cm. The percentage free matrix particlesfor agiven areaistheratio of the
number of particles ne freely exposed on top of the bed to the number of particles of
similar sizes nemp, that are embedded (Fig. 3.21 ¢). The percentage of free matrix particles
Ny exp = 100 - Nexp/Nemb ClOSElY COrresponds to percent embeddedness E.

Besides direct measurements of free particle space, the degree of protrusion by a particle
with the size D can also be expressed by the ratio of D/Dsp. A particle is protruding above
the median particle size of the bed if D/Dsp > 1, and hiding if D/Dsp <1.

To characterize a streambed, particle embeddedness should be measured on at least 100
particles. A sample size equation (Section 5.2.1) should be consulted to determine the
exact relation between sample size and error for a specific sample site. A more intensive
sampling scheme is to measure embeddedness within circles of 60 cm in diameter
outlined by hoops. Percent cobble embeddedness Ey, for each hoopis100 - >D¢/ZD:.
Approximately 25 - 35 particles are measured within each hoop, and approximately 20
hoops (with atotal of 500 - 700 particles) are needed to characterize Eo, for a reach.

3.4.6 Gravel sheltered in pockets

In contrast to horseshoe vortex erosion that increases gravel mobility, gravel particles
hidden in pockets between immobile boulders or other obstacles are sheltered from flow
and have a pronouncedly lower mobility. Bartaet al. (1993) suggested that pocket gravel
is mobilized during flood events with a two-year recurrence interval. Mobilization of
pocket gravel required total shear stresses 2 to 20 times larger than those needed if
boulders were not present, and the required total shear stressincreased with the height of
obstructions (Barta et al. 1994). Thus, when sampling bed material for aflow competence
analysisin boulder-bed streams, the population of transportable gravel needsto be
analyzed separately from immobile boulders.

3.4.7 Implications of bed-surface structures for bed-material sampling

Bed-surface structures affect the mobility of particles on the bed. Imbricated, embedded,
wedged, sheltered, and clustered particles have higher erosion thresholds than particles of
the same size not contained in these surface structures (Brayshaw et al. 1983; Brayshaw
1985, Naden and Brayshaw 1987). Conversely, particles subjected to horseshoe vortex
scour are moved by flows much lower than the threshold flow needed for particle motion
from a plane bed without obstacles (Bunte and Poesen 1993, 1994). Thus, if bed material
issampled for analysis of forces exerted onto the streambed, initial motion studies, flow
competence and bedload transport prediction, it isimportant to recognize and note particle
packing and the presence of structures (Dunkerley 1994). Bed-surface structures also
affect the hydraulic roughness of the stream. Imbricated beds and embedded particle
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structures have a lower roughness than one would assume from particle size alone,
whereas the presence of clustersincreases bed roughness beyond that expected for large
particle sizes.

Surface structures may cause difficulties when sampling bed material. The presence of
clusters or horseshoe vortex erosion requires that the spacing between sample points
exceeds the size of the bed-structure. Taking more than one particle from local
accumulations of coarse or fine particles (clusters or wakes) causes serial correlation in
the sample and should be avoided (Section 4.1.1.4). Similarly, clusters or wakes should
be avoided when trying to estimate the average particle size within the sample area.
Avoiding bed-material structuresisimportant when collecting all particles contained
within asmall sampling area (areal sample, Section 4.1.3).

Imbricated and embedded bed surfaces may also cause problemsfor visual particle-size
analysis or when measuring the size of surface particles from a photograph. Imbrication
and embeddedness does not pose so much a problem for measurements of the b-axis, but
for measurements of the a- and c-axes which are partially hidden from view (Section
4.1.2.2 and 4.1.3.3). Photographs of the streambed surface, however, are quite suitable to
map bed-surface structures. The orientation of individual particles can be analyzed from
large-scal e photographs that cover 0.1 —1 m? of streambed. Areal overview photographs
that cover 100 m? or more can be taken from a camera suspended 10 - 30 m above ground
by a crane or helium balloon and are suitable to analyze the spatial distribution of bed-
surface structures within areach (Section 4.1.3.4).
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4. Sampling procedures and equipment

Bed material in gravel and cobble-bed streams can be sampled by two different methods:
1. Surface sampling: samples a presel ected number of surface particlesfrom a
predefined sampling area, and

2. Volumetric sampling:  samples a presel ected sediment volume from a predefined
sedimentary layer.

The study objective determines whether to sample the surface sediment or a particular
sedimentary layer. Fig. 4.1 presents the basic four stratigraphic units that are common in
armored gravel-bed rivers and that are commonly sampled.

Armor layer Surface sediment

QO Qo
Subarmor layer

Fig. 4.1: Stratigraphy of an armored bed distinguishing between armor layer, subarmor layer, surface
sediment, and subsurface layer.

Surface particles can only be sampled using surface sampling techniques (Section 4.1).
Bed-material layers, such asthe armor, subarmor, and subsurface layer, which may be
infilled and censored (Section 3.3.1), have a specific thickness, and can therefore only be
sampled by taking a volumetric sample (Section 4.2).

The procedural details with which a selected method is then performed depends on natural
factors such as stream size, stream morphology, flow conditions, and the bed-material
particle-size distribution. For example, sampling equipment and procedures must be
suitable for the bed-material particle sizes, which in mountain streams may range from
sand to boulders. Limited road access in remote areas dictates that equipment must be
portable, and pristine conditions in sensitive environments may require sampling the bed
in anon-destructive way. Sampling in submerged conditions must address poor
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visibility of the bed under water, and the tendency of fine particlesto be washed away by
the flow.

Man-made factors also play an important role in the selection of sampling procedures. A
study might not be able to afford a great deal of field time, but may instead have lab time
to analyze samples or photographs taken of the streambed. The study objective or the
streambed conditions may require using severa different sampling methods or
procedures, which then need to be selected to facilitate a comparison or combination of
sampling results. A limited budget forces project managers to reduce the extent of the
study or to opt for fast and simplistic field techniques performed by minimally-trained
seasonal field crews, both of which might compromise the study objective.

The user must also consider the form of particle-size analysis applied to the sample.
Particles per size class can be either counted or weighed, and size distributions may be
explained in terms of frequency-by-number or frequency-by weight (Section 2.1.4.1).
However, number- or weight-based particle-size analyses yield different results.

The user must also consider that different sampling proceduresyield different particle-size
distributions. A pebble count and an areal sample collected from the same surface yield
different particle-size distributions even when the same method of particle-size analysis
was used for both samples. In order to compare or combine particle-size distributions
from pebble counts and from areal samples, the distribution of areal samples should first
be converted (Section 4.3.3). However, the numerical value of conversion factors
depends on the exact procedure with which the areal sample was taken (Section 4.3.2).

4.1 Surface sampling

Surface sampling collects bed-surface particles that are exposed on top of the streambed
whether the bed is dry or submerged. The vertical extent of the surface sediment is equal
to the diameter of one particle, i.e., the particle that is exposed on the surface at any given
point (Fig. 4.1). Lacking adistinct vertical dimension, surface sediment can only be
sampled by surface sampling methods, but not by methods that collect a volume of
sediment. Although most surface particles are easy to identify, problems arise when small
particles are surrounded by large particles, and when particles are partially exposed only,
or partially hidden under neighboring particles (e.g., when the surface isimbricated or
clustered (Sections 3.4.2 and 3.4.3)). At some point the question arises as to how much of
a particle needs to be actually visible at the surface to qualify as a surface particle.

Bed-surface sediment can be sampled by three methods:
» pebble counts: (line counts) select and hand-pick a preset number of surface particles

at even-spaced increments along transects that may be parallel and
span arelatively large sampling area (= 100 m?) (Section 4.1.1.);
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e gridcounts:

select particles at a preset number of even-spaced grid points

that span arelatively small sampling area (= 1-10 m?), hand-
picking particles or measuring particle sizes on photographs (Section
4.1.2), and

» areal samples:.

include all surface particles contained within asmall preset area

(= 0.1 -1 m?) of the streambed, often using adhesives to ensure that
small particles are included representatively in the sample (Section

4.1.3).

The three sampling methods differ in several pointsincluding the spacing between
sampled particles, the size of the sampling area covered, suitability for small and large
particle sizes, field time vs. lab time, and the comparability of sampling results. These
factors should be taken into account when selecting a sampling method. Differences
between the three surface sampling methods are summarized in Table 4.1.

Table 4.1: Comparison between pebble counts, grid counts, and areal samples

Pebble counts

Grid counts

Areal samples

Sample a preset number of
particles in wide and approxi-
mately even-spaced increments
of at least Dy Size

Cover alarge sampling area

Suitable for gravel and cobbles,
not for sand

Long field time, no lab time

Sampled particle sizes
comparable and combinable
with particle sizes from grid
counts and volumetric samples

Sample a preset number of
particles under a grid of
approximately Dy« Size

Sample several small areas
within areach or cover small
areas of homogeneous sediment
(facies patch)

Suitable for gravel, not for sand

Hand-picking: long field time
no lab time; Photographs: short
field time, long lab time

Sampled particle sizes
comparable and combinable
with particle sizes from pebble
counts and volumetric samples

Sample all surface particles within
asmall predefined sampling area

Focus on point locations and
require several samples to be taken
within the sampling area

Suitable for sand to medium gravel
not for coarse gravel or cobbles

Both field time and lab time

Sampled particle sizes not directly
comparable and combinable with
particle sizes from pebble or grid
counts, or volumetric samples

Pebble counts focus on mid-sized and large particles, while neglecting fines and are
suitable for covering large sampling areas by parallel transects. Pebble counts take
between 0.5 and 2 hours per sample, depending on the number of particles to be collected
and the difficulty involved in dislodging particles from the bed; however, no further
laboratory time isneeded. Grid counts performed in the field select particles under agrid.
The grid may consist of elastic bands stretched over arigid frame. Grid counts are
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usually conducted on small sampling areas. Surface sampling of small areas lends itself
to using photographs on which grids can be superimposed for later analysis.

Photographing a sediment surface takes very little field time per sample, but analyzing the
photographs requires arelatively large amount of |aboratory time (Sections 4.1.2.2 and
4.1.3.3). Areal samplesrequire both field time for taking the sample, and lab time for
seve analysis. Areal samples are suitable for gravel sediment that contains arelatively
large amount of sand and fine gravel, because areal samples, which focus on a small
sampling area, are capable of including these fines, whereas pebble counts and grid counts
tend to neglect them.

Particle-size distributions obtained from pebble counts and grid samples are mutually
comparable and combinable. Both distributions are also comparable and combinable with
distributions obtained from volumetric samples (Section 4.3). Particle-size distributions
of areal samples need to be converted into an equivalent volumetric or grid distribution
before making a comparison or combination with size distributions from pebble counts or
volumetric samples (Sections 4.3 and 4.4).

4.1.1 Pebble counts along transects

Pebble counts are used to determine the particle-size characteristics of gravel and cobble
surface sediment and can be performed on dry beds as well as on inundated beds, aslong
asthe streams are wadable. Percentile values of the cumulative particle-size frequency
distribution and the percent fines are used for many applications including computations
of incipient bedload motion, channel-bed roughness, stream morphology studies,
cumulative watershed effects analysis, and stream habitat evaluation.

4.1.1.1 Heel-to-toe walks and sampling along a measuring tape

A pebble count samples a preset number of particles in even-spaced increments along
transects. Two methods are usually used to determine the transect locations, the spacing
between selected particles, and identification of the particle to be selected: a heel-to-toe
walk and sampling at even-spaced marks along a measuring tape. The main differences
between these two methods are summarized in Table 4.2.

Wolman pebble count with heel-to-toe walk

Two techniques of particle selection are commonly used for pebble counts. The first
technigue was proposed by Wolman (1954). An operator traverses agravel surface along
agrid pattern. The grid may be established by pacing or laid out by lines or atape. A
particleis collected in the vicinity of each grid point. Wolman (1954) emphasizes that the
particle to be included in the sample must be selected at random. As ameansto achieve
this randomness, he proposes to pick up the particle from beneath the tip of the boot while
looking away. The spacing between selected particlesis determined by the size of the
grid needed to cover the sampling area with 100 grid points (Wolman 1954). Wolman’'s
methodology is often interpreted as traversing a sampling area with heel-to-toe
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steps, paces, strides, or several steps at atime and picking up the particle first touched by
apointed vertical finger, eyes averted, under the tip of the boot (e.g., Leopold 1970; Hey
and Thorne 1983; Fripp and Diplas 1993; Potyondy and Hardy 1994; Kondolf 19973;
Marcus et a. 1995; Bevenger and King 1995). The method is most popular because no
specific field equipment isrequired to lay out the grid. The step-spacing can be adjusted
to the size of the areato be covered or the size of particlesin the stream, and the

procedure can be done in wadable flows (Y uzyk 1986).

Systematic sampling at even-spaced marks along a measuring tape
A more systematic way of sampling surface bed-material with pebble countsisto stretch a
measuring tape in several transects across the sampling area. Particles are selected at
intersections with even-spaced marks along the edge of the tape, for example at marksin
1 foot or 0.5 mintervals (e.g., Wohl et al. 1996) or exactly under the grid points of the
established measuring grid (Hey and Thorne 1983; Y uzyk and Winkler 1991). The
spacing between particles depends on the bed-material particle size and is set to avalue
larger than the b-axis of the Dy particle size of concern. This spacing is necessary in
order to prevent double counting of large particles, which should be avoided because it
causes a serially correlated sample and bias towards large particle sizes (Section 4.1.1.4).

Table 4.2: Overview of differences between hedl-to-toe sampling and systematic sampling along a
measuring tape and potential operator bias and variahility in poorly sorted gravel and cobble-bed streams.

Heel-to-toe steps

Systematic sampling along a tape

Step spacing:

Particle selection on dry
surfaces:

Possible improvements:

Particle selection under
water:

Sampling path:

Possibility for operator bias:
- against fines
- against cobbles & boulders

Variability between:
- samples
- operators

1- 2 paces(0.3- 0.6 m),
regardless of bed material size

Blind touch at the tip of the
boot

Keep finger straight to avoid
touching neighboring particles

Blind touch at the tip of the
boot

Along an imaginary line at
operator’s discretion

Higher
Higher

Higher
Higher

1 - 2 timesthe D particle size, in
accordance with bed material size

Visual correspondence with even-
spaced marks on measuring tape

Use pin or awl for more precise
identification of particle to select

Visual correspondence with even-
spaced marks on a measuring tape
as best as possible; otherwise blind
touch

Along atape, strictly predetermined

Lower
Lower

Lower
Lower
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Results of pebble counts can vary greatly between the two methods. The traditional
Wolman pebble count with its blind touch, heel-to-toe steps, and walking along imaginary
lines allows the operator more latitude in particle selection, the spacing between particles,
and the sampling path than sampling at preset intervals along a measuring tape stretched
in transects across the reach. This methodological difference and its effects are discussed
in more detail in Sections4.1.1.3-4.1.1.5. Datarecording and analysisisthe samefor all
pebble count methods (Section 4.1.1.7).

4.1.1.2 Sources of errors in pebble counts

Particle-size distributions obtained from pebble counts must be accurate in order to be
useful for a study objective. Estimates of bedload transport rates, for example, vary
significantly if the bed-material percentile particle-size used for the computation varies
dightly (Gesdler et al. 1993; Bunte 1994). Particle-size distributions recorded from
pebble counts also need to be accurate for streambed monitoring that compares bed-
material size parameters between reaches or over time (Potyondy and Hardy 1994;
Bevenger and King 1995; MacDonald et al. 1997; Schnackenberg and MacDonald 1998).
The detection of small changes in a percentile of concern or the percent finesisimportant
for a prompt onset of remedial actions. However, pebble counts, which appear to be
simple and straight forward on first view, provide many opportunities for sasmpling errors.
Pebble counts are usually subject to operator error and statistical error which are
summarized below and discussed in greater detail in the following sections.

Operator error

Particlesto be included in a sample must not be affected by operator preferences.
However, operators are likely to introduce errorsinto pebble counts by favoring mid-sized
and handy particles, while avoiding very small and very large particles that are difficult to
pick up (Section 4.1.1.3 and 4.1.1.4). These preferences may be voluntary or involuntary,
creating biased and non-random samples. The practice of double counting large particles
produces serial correlation (Section 4.1.1.5) and bias towards large particles. Operators
also introduce sampling scheme errors by sampling areas that have a systematic spatial
variation in particle sizes, or by favoring easily accessed stream locations, while
neglecting poorly accessible ones. Spatially non-random sampling again creates bias and
non-random samples. Different sampling schemes for pebble counts are discussed in
Sections 6.2 and 6.3. Operators a so introduce errors into pebble counts when particles
sizes are not measured correctly (Section 2.1.3.6). The use of templates largely addresses
this problem.

Operator error addsto the statistical error of asample. However, unlike statistical errors,

operator errors do not improve with sample size, but become relatively more important as
sample size increases (Hey and Thorne 1983).
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Statistical error

Sample size and precision for number-based particle-size analysis are discussed in detail
in Section 5.2. A 100-particle pebble count might determine the Dsp to Dg, particle sizes
to within tolerable levels of precision in a moderately-well sorted gravel bed (no sand, no
boulders). However, the precision of a 100-particle pebble count is usually too low to
compare particle-size distributions from different sites or over time, nor does a 100-
particle sample suffice in poorly sorted gravel beds comprised of sand and boulders.
Generally, afourfold increase in sample size to 400 particlesis required to halve the
sampling error. Much larger sample sizes are needed to accurately determine distribution
parameters such as sorting, skewness and kurtosis (Sections 2.1.5.4 — 2.1.5.6). Most
computations of statistical error do not include operator error, except for the statistical
procedure of two-stage sampling (Section 5.2.2.1).

4.1.1.3 Operator bias against small particles

Pebble counts are widely used to determine the proportion of fine sediment on a
streambed, such asthe Ds or D3, or the percent fines. However, it isusually not realized
that the computation of the fine part of a cumulative particle-size distribution is not only
burdened with a statistical error that is more than twice as large asthat for a Dsp or Dga,
but also with an operator error that again is larger than the operator error associated with
the Dsgg or Dga.

The sampling component of pebble counts consists of two steps: identifying the particle to
be included in the sample from among neighboring particles, and the actual lifting or
retrieval of the particle from the streambed. Particle identification may be based on touch,
i.e., the particle first touched by the pointed finger, eyes averted, isincluded in the sample.
Thisisthe method used in heel-to-toe sampling. Alternatively, particle identification can
bevisual, i.e., by correspondence of a particle with intersections of even-spaced marks
along ameasuring tape. Fingertips, or the whole hand are used for particle retrieval.

Both particle identification and retrieval may be problematic when sampling particles of
fine gravel or coarse sand. Sampling in abed of similar-sized, small particles, touching
cannot discriminate between neighboring small particles, and retrieving one specific
particle may be difficult. Errorsin particle identification and retrieval are of negligible
consequence when all neighboring particles fall into the same size category and the
operator can select any one particle from a pinch of sediment taken from the streambed.

The pinch-approach is not appropriate if small particles are surrounded by neighboring
coarser particles, because in the presence of particles of mixed sizes, the operator hasto
identify and pick one particle. Identifying asmall particle amidst larger onesis difficult
because the tip of the finger is more likely to touch larger neighboring particles before
touching asmall particlein their middle. The probability of first touching neighboring
large particles increases with the size of the large particles and the tightness of interstitial
spaces, and an increasing difference in particle sizes makes the touch method increasingly
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prone to sampling error. Similarly, the retrieval of small particles becomes more difficult
as the surrounding particles become larger and more tightly spaced.

Factors exacerbating touch-identification of small particles and their retrieval
Problems of identifying small particles by touch and retrieving them can be exacerbated
by many factors. Long fingernails may reduce the ability to feel the streambed with the
fingertips. Not keeping the pointed finger in an exactly vertical position reduces the
chance of touching afine particle (Ramos 1996). Submergence by flow makesit more
difficult for the operator to keep the pointed finger steady, which isimportant when
identifying small particles by touch. Cold water can make the fingers numb and too
clumsy to feel and pick up asmall particle, and a particle just picked up can be washed
out the operator’s hand by the flow. The cold water problem is most pronounced in
mountain streamsin late fall or before the spring snow melt. Thus, to improve sampling
accuracy, mountain streams should be sampled in later summer when the water isless
cold. Gloves can be useful for under-water pebble counts. Simple rubber household
glovestied at the wrists with rubber bands are often a workable compromi se between cold
protection and retaining some feeling for small particles. Neoprene gloves are usually not
suitable for retrieving fine particles from the bed.

Visual identification most useful on dry beds

On dry beds, a small particle to be included in the sample can be more accurately
identified visually at the intersection with even-spaced marks on a measuring tape
stretched across the sampling area than by touch. The accuracy of visual particle
identification on dry beds can be further improved if the operator gets close to the tape
and uses afine pin, or an awl, to pinpoint the exact particle to be included in the sample.
If the approach isfollowed carefully, particles as small as 2 mm can be sampled
representatively. The precision of visual particle identification on adry bed does not
necessarily have to decrease as the size of surrounding larger particlesincreases, provided
the operator looks straight (vertically) down, so that small particles are not hidden from
view as they would be when viewed obliquely. Thus, whenever possible, pebble counts
should be performed on dry beds where particles can be visually identified.

Visual identification becomes problematic for small particles on submerged beds. Rocks
need to be placed onto the tape to hold it down on the streambed and this disrupts the bed
beyond the disruption associated the actual sampling process (alead-filled measuring tape
might be appropriate). The largest problem isthat the visual image becomes distorted
under water, which makes it impossible to visually identify small particles, particularly in
deeper or faster flows.

Sampling poorly accessible stream locations or irretrievable particles

Small particles are not only difficult to identify and retrieve, but are also often deposited
in deep or otherwise poorly accessible stream locations. If the sampling objective isto
collect particles from the entire reach, then those areas need to be included in the sample.
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Operators, for understandabl e reasons, tend to avoid |ocations too deep for wading, or
poorly accessible areas, such as under overhanging branches or behind logs (Ramos
1996). Thus, fine sediment, which islikely to be encountered in these locations, isless
likely to be included in the pebble count and therefore underrepresented. The operator
error arising from avoiding streambed areas of poor accessibility can be reduced if the
sampling path is predetermined, such as by sampling at even-spaced marks along a
measuring tape stretched across the sampling area at even distances. The size class of
particlesthat are irretrievable or in inaccessible sampling locations must be estimated in
order to maintain the randomness of the sample. The 0.5 @size class of an irretrievable
particle can usually be estimated, if the particle to be selected can be seen or touched. If
the particle size cannot be estimated, then that location cannot be part of the sampling
area.

Small particles between the low and the high-flow water line

Unless a sampling protocol clearly determines the stream width to be sampled, fine
particles on the exposed bank between the low and high-flow water line may or may not
be included representatively in the sample. Lack of a sampling protocol |eaves the
operator with no guidelines as to how far to sample the banks and may introduce a high
variability in the proportion of fine sediment between samples or between operators. The
decision of whether the sampling area covers the bankfull width of the stream, or remains
within the low flow bed, depends on the sampling objective. A study which focuses on
the supply of fine sediment, for example, should sample the bankfull width, whereas
sampling for a computation of stream roughnessis usually restricted to the low flow bed.

Results of operator bias: small particles underrepresented and variable

Operators are more likely to neglect small particles and instead select mid-sized, handy
particles (Marcus et a. 1995). This propensity is due to the difficulty of touching small
particles first before touching neighboring large particles, of seeing small particles among
large ones in a bed submerged by flow, of selecting small particles off the bed, and of
loosing small particlesin the flow. Some operators are conscious of this problem and try
to avoid bias against small particles. Other operators may even overcorrect and introduce
anew bias (Marcuset al. 1995). Often, operators are not consistent in their effort to
representatively include small particlesin the sample, and may include small particles
within fine sediment but not small particlesin between large ones. Together with the
tendency of small particlesto accumulate in poorly accessible areas, and a poorly defined
stream width to be sampled, the number of small particlestends to be underrepresented in
asample. Between operators, small particle sampling isquite variable. Biasagainst small
particles coarsens a particle-size distribution on its fine end, whereas a variability in the
number of fines leadsto variability in the percentile particle-size of the Ds and D, or the
percentage fines, such as particles smaller than 4 or 16 mm.
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Quantification of variability in fines due to operator error

A good quantification of operator error in pebble countsis currently not available. The
magnitude of operator error for pebble countsin gravel-bed streams can be estimated by
comparing the total error (operator and statistical) of heel-to-toe pebble counts with the
purely statistical error of a surface sample. Ideally, the difference between the total error
and the statistical error indicates the magnitude of the operator error.

The purely statistical error around the various particle-size percentiles of a surface sample
can be computed using a bootstrap approach in which a computer re-samples alarge
sample entered into the computer. Thiswas performed by Rice and Church (1996b) for a
surface sample of more than 3500 particles collected from the gravel bed of the
Mamqguam River. The size distribution had a standard deviation of 1.17 @and was
dightly skewed towards atail of fines, typical of particle-size distributionsin coarse
gravel beds. A sample size of 400 particlesyielded a statistical percent error around the
Ds (in mm) of approximately + 20%, which isroughly equivalent to an statistical absolute
error of + 0.3 pfor the ' (Fig. 4.2). The percent error around the Dso, D75 or the Dg,
was approximately + 8%, which is roughly equivalent to an absolute error of + 0.12 ¢(see
Section 5.2.2.3 for details). Note that these errors pertain to the statistical error only and
that the collected particles are assumed to be statistically independent.

The combined statistical and operator error was computed for a set of 7 heel-to-toe pebble
count samples obtained by the authors in several gravel and cobble-bed rivers. The
samples had bed-material sorting coefficients s between 1.0 and 1.6, and sample sizesn
between 201 and 537. The mean s for all sampleswas 1.24, and the mean sample size
was 451. Thus, standard deviations and sample size were generally similar to the standard
deviation and the 400-particle sample size for the sample from the Mamguam River.

Each of the 7 samples was split in two: subsample a comprised the 1%, 3%, 5™, ... recorded
particle size for each transect, whereas subsample b comprised the 2™, 4™ 6", ... recorded
particle size. The percent error eypp around several percentiles in mm between the two

subsamples was computed using a standard sample size equation eypp = (1.96 - s/up)/\/ﬁ
(Section 5.2.1), where 1, is the mean of the two subsampl e percentiles analyzed, e.g.,
(Dsa) + Dsw)/2.

The mean total errors around the Dys, Dso, D7s, and Dg4 for the 7 heel-to-toe samples were
roughly within the range of the statistical errors determined by Rice and Church (1996b)
(Fg. 4.2). Thisindicatesthat the variability between samples due to operator error is of
no large concern for central and high percentiles. However, the between-sample
variability was quite pronounced for small percentiles. The total relative error (operator
and statistical error combined) around the Ds was + 50% for the heel-to-toe samples,
which is 2.5 times larger than the purely statistical sample error determined for the Ds
from the bootstrap approach by Rice and Church (1996b). The corresponding total

The absolute error in @ units is not precisely convertible to the percent error in mm because the percent error in mm is not
evenly distributed around a percentile (Section 5.2.2.3, Fig. 5.8). However, this imprecision is negligible for small errors.
The numerical value of an absolute error in @ units can be converted to the percent error in mm by the following rule of
thumb: €.y - 70 = €ymm OF €ymm 170 = €4 FOr example, an absolute error of 0.1 @ is approximately equal to a 7% error in
mm (€:gm - 70 = €9spm).
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5.2.3.3 for details). Mean percent error observed for heel-to-toe sampling (—e —), and for samples taken
with the sampling frame (— -) ({Ttion 4.1.1.6).

absolute error around the Ds for the heel-to-toe samples was + 0.75 @units, which is one
and a half standard sieve classes. Thishigh error for small percentiles suggests that heel-
to-toe pebble countsin coarse gravel- and cobble-bed streams should only be used for
determining the Dso, D7s, and Dg, of a distribution, but not for small percentiles or for
determining the percent fines.

Truncation of the underrepresented and variable fine end of size distributions

The exact particle size at which a bias against small particles in heel-to-toe sampling
begins to show depends on the streambed conditions. Rice (1995), for example, found
that particles finer than 8 mm are underrepresented in underwater pebble counts, whereas
Fripp and Diplas (1993) suggest that particles finer than 15 mm cannot be sampled
representatively in heel-to-toe pebble counts. As a statistical measure to addressthis
problem, Rice (1995) suggested exclusion of particlesfiner than 8 mm from the size
analysis, thus truncating the cumulative distribution curve at 8 mm. Truncation at the fine
end coarsens the low percentiles of the distribution, while large percentiles are less
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affected. Thus, truncation at the fine end of the sample should be restricted to studiesin
which low percentile particle-sizes, such asthe Ds or D16 are of no concern.

Another, less drastic approach to deal with bias against finesisto tally all small particles
in onejoint particle-size class, for example, asfiner than 8, or 16 mm. (Generally, pebble
counts tally particles smaller than 2 mm jointly in the < 2 mm category). This approach
assumes that the sampling difficulty liesin the distinction of small particles between
neighboring small particle sizes, but does not address the difficulty of reliably identifying
and selecting a small particle from between neighboring large particles. The advantage of
joint tallying as opposed to truncation is that it does not affect the size distribution of
larger particles.

If the correct characterization of small particle sizesis the study goal, Diplas and Fripp
(1992) and Fripp and Diplas (1993) suggest taking areal samples (with clay asan
adhesive) (Section 4.1.3.1). Note that particle-size distributions from areal samples need
to be converted into the equivalent volumetric or grid-by-number distribution before they
can be compared to particle-size distributions from pebble counts (Section 4.3.1 and
4.3.2).

4.1.1.4 Operator bias against and towards cobbles and boulders

Heel-to-toe walks were invented for sampling streambeds of mid-sized gravel, but not for
sampling beds with cobbles and boulders or streams with bed surface-structures (e.g.,
clusters and wake deposits). If applied to such beds, heel-to-toe sampling may bring
about bias both for and against large clasts.

Operators avoid stepping onto cobbles and boulders

One reason for operator bias against cobbles and boulders in heel-to toe samples arises
from the practice of determining the sampling location by foot placement. Operators are
understandably reluctant to place their feet onto an exposed and slippery cobble or
boulder for risk of insecure footing and falling. Consequently, if particle identification is
based on foot placement, operators (even unconsciously) tend to avoid cobbles and
boulders in heel-to-toe pebble counts. An operator’ s reluctance to step onto a cobble or
boulder islikely to increase with increasing dlipperiness, size, and protrusion of cobbles
and boulders, the coldness of the water, swiftness of flow, remoteness of the site, or other
factorsthat decrease an operator’ s readiness for taking arisk. Physical shape of the
operator can also play arolein the variability of sampling results between operatorsin
heel-to-toe pebble counts. Bunte and Abt (2001) compared sampling results obtained
from heel-to-toe walks in a cobble-bed stream (Dsp = 69 mm, Dyax > 720 mm, sorting
coefficient 5 = 1.7 ¢) between two operators of different size. The operator with a small
boot size (Operator B) was more prone to avoiding cobbles and boulders, and produced
particle-size distributions with fewer coarse particles than the operator with alarge boot
size (Fig. 4.3). Operator B also extended the sample further onto the banks and counted
more small particles than Operator A (Section 4.1.1.3).
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Fig. 4.3: Different cumulative frequency distributions obtained by operator A (large boot size) and operator
B (small boot size) sampling with hedl-to-toe stepsin a cobble-bed stream.

Operators avoid cobbles and bouldersin their sampling paths

Cobbles and boulders are not only risky to step upon, but also heavy, often wedged, and
difficult to dislodge from the bed. Heel-to-toe walks make it easy for operatorsto avoid
such particles; it only requires a slight change in foot position in the last one or two steps.
Operators might also change their previously pursued sampling path if a streambed area
lies ahead that has particularly unappealing-looking cobbles and boulders or that seems
poorly accessible. Again, avoiding cobble and boulders produces a particle size-
distribution that, compared to an unbiased sample, istoo fine in its coarse part.

The tendency to avoid, and thus bias against cobbles and boulders can be corrected by
sampling systematically, such as at even-spaced intersection along a measuring tape
stretched at even increments across the sampling area. Systematic sampling along a
measuring tape renders the operator’ s stepping position irrelevant. If an irretrievable
particle is encountered, randomness of the sample can be maintained by estimating the
particle-size class. The 0.5 ¢size-class of aparticle can usually be estimated to within +
one size class if the particle to be selected can be seen or touched. If the particle size-
class cannot be estimated, then that location must be explicitly excluded from the
sampling area.
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I nherent bias versus overrepresenting coar se particles by double counting

Pebble counts have an inherent bias towards coarse particles, because sampling at even-
gpaced intervals gives coarse particles alarger statistical chance of being included in the
sample than smaller particles. Thisinherent statistical bias makes the number frequency
of a pebble-count size-distribution directly comparable to the weight frequency of a
volumetric sample from the same location, provided the bed is not armored (see
conversion of sample distributions, Sections 4.3.1 —4.3.2). Inherent statistical bias should
not be confused with an operator bias towards cobbles and boul ders due to the practice of
double counting.

Counting the size of cobbles and boulders as frequently as the preset spacing (e.g., one
boot length) is statistically not correct because it produces a serially correlated sample that
isnot random. The step spacing of pebble counts must be wide enough to alot only one
count per each cobble or boulder. Yuzyk and Winkler (1991) suggest that the spacing
should be twice as large as the largest particle diameter to ensure that each particle
receives only one count. Double counting due to proximity should not be confused with
double counting that may result from random sampling with replacement.

Double counting of cobbles and boulders overrepresents the presence of large particles
and produces particle size-distributions that are too coarse in their coarse part. The effect
on the Dso percentile particle-size is small if double counting occurs infrequently, but the
effect on the Dgs can be quite pronounced if many large particles are counted double or
multiple times. Thisisillustrated by the following example for a poorly sorted cobble bed
(s =1.7) with a Ds particle size of 69 mm and a Dy particle size class of 720-1024 mm
(particle-size distribution for Operator B in Fig. 4.8). If cobbleslarger than 180 mm and
boulders were allotted double or multiple counts so that the total sample size increased by
1, 2, and 3% (e.g., by 5, 10, and 15 particlesin a 469 particle pebble count), the Dso
particle size would increase by 1, 3, and 4%, respectively. The Dgs would increase by 3,
5, and 8%, and the Dgs particle size by 4, 7, and 22%. Although double counting and
cobble avoidance introduce biases in opposite directions, and their effects act towards
canceling each other, one inaccurate procedure must not be used as a corrective means for
another inaccurate procedure.

Another form of spatial correlation isintroduced if several particles from within the
coarse or fine part of bed surface-structures (Section 3.4.1) are included in the sample. A
random sampl e series should only contain independently deposited particles, whereas the
position and size of particleswithin a cluster or wake deposit are influenced by the size
and position of neighboring particles. Thus, in order to avoid multiple counts of large
particles within a cluster, or of small particles within awake deposit, the sample point
spacing needs to be larger than the diameter of bed surface-structures.

4.1.1.5 Statistical detectability of operator bias

Heel -to-toe sampling in gravel-bed streams tends to undersampl e both very fine gravel as
well as the cobble/boulder fraction. Consequently, mid-sized, handy particles are
oversampled. Double counting due to small sampling-point spacing oversamples cobbles
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and boulders. The bias against fines has the most pronounced effect on the cumulative
particle-size distribution if the bed contains alarge number of difficult-to-sample fines
and thus presents a large opportunity for neglecting fines. Similarly, the tendency of
avoiding cobbles and boulders has the most pronounced effect on the cumulative particle-
size distribution in beds containing a large number of difficult-to-sample cobbles and
boulders. Fig. 4.4 shows the expected effect of operator bias on particle-size distributions
in heel-to-toe samples compared to unbiased sampling.

a) Cumulative frequency distribution b) Frequency distribution
—— unbiased , Z —— unbiased
- — biased 4 - — biased

5 >
= 2
- ()
S =
(O]
e
X

Particle-size class Particle-size class

Fig. 4.4: Cumulative distribution (a) and frequency distribution (b) of an unbiased pebble count ( —-and a
pebble count biased against small and large particles ( - - J typical of heel-to-toe sampling in gravel- and
cobble-bed streams.

The bias that heel-to-toe sampling introduces against the fine gravel fraction and the
cobble/boulder fraction is not detectable by standard statistical procedures, for example
when samples are compared using ANOVA, or Ftests (Wohl et al. 1996). Thisis
because each percentile is associated with alarge error due to the relatively large standard
deviation on poorly-sorted beds and the statistically small sample size of 100 — 400
particles. The difference between two size distributions, each with alarge error, must be
quite large before it becomes statistically detectable. For example, the statistical error
around the mean particle size of an approximately normal distributed 100-particle pebble
count with a sorting coefficient of 1.6 is+0.32 ¢, or approximately +22% for particle
sizesin mm®. Thus, the means of two such 100-particle pebble counts would have to

% An absolute error of ey = 0.32 pwas estimated for an assumed normal distribution of particle sizes in ¢ units from e, = t;.
w2t - SINC°. tiasns Was set to 1.987, a=0.05, s is the sample sorting coefficient, and n the sample size. Refer to Section
5.2.1 for further detail.

3 See footnote 1 in Section 4.1.1.3.
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differ by more than 22% before their difference is statistically significant. 1f one pebble
count had a mean of 50 mm, the other pebble-count mean would have to be larger than 61
or lessthan 39 mm before the difference is statistically significant. Stream studies,
however, may be concerned about differences between sample means considerably
smaller than 20%, or may require results with an error of much less than 20%.

The absence of a statistically significant difference between two samples from poorly
sorted streambeds al so gives a false sense of precision and does not mean that thereis no
difference. Differences between two samples can usually be better presented by simply
plotting parallel samples. The user can then decide from the plots whether the observed
difference between samplesis acceptable for the study.

The study by Wohl et al. (1996) provides an example of inter-sample difference that is
observable from plotted data, but not indicated as statistically significant by standard
statistics. Wohl et al. (1996) compared samples obtained from heel-to-toe sampling and
sampling along a tape on mainly dry beds of several gravel- and cobbles-bed streams.
They found that both sampling methods produced statistically indistinguishable results.
However, when data were plotted, the ratio of the same percentile particle-sizes between
heel -to-toe samples and sampling along a tape showed a systematic decrease with bed-
material particle size (Fig. 4.5) (Bunte and Abt 2001). On fine gravel beds, heel-to-toe
samples had coarser D1, Dsg and Dg, particle sizes than sampling along atape. By
contrast, heel-to-toe sampling in coarse gravel and cobbles beds had smaller Dsy and Dgy
particle sizes than sampling along a measuring tape (Fig. 4.5). Both results correspond to
the findings of observer bias.

4.1.1.6 Sampling frame for bias reduction in particle identification

A measuring tape, which is a useful sampling tool for preventing operator bias against
fine and coarse particles on dry beds, is difficult to use when the streambed is submerged
by flow, particularly when the flow isfast. The marks on the tape are difficult to see and
relocating a large number of rocksto hold the tape down on the bed creates an extra bed
disturbance beyond that induced by the actual sampling process. Operators performing
pebble counts in mountain gravel-bed streams are often faced with submerged beds and
swift flow, however, and need a device that overcomes the shortcomings of a measuring
tape in underwater pebble counts and that mitigates the typical sampling errors associated
with heel-to-toe walks. For this reason, Bunte and Abt (2001) developed a sampling
frame, following a suggestion made earlier by Marcus et al. (1995).

Construction of the sampling frame

The sampling frame consists of four aluminum bars that are connected to form a square
with an inside diameter of 60 by 60 cm (Fig. 4.6 @). The four aluminum bars are 0.63 cm
thick (0.25inch), 3.81 cm (1.5 inch) wide, and 65.4 cm long, cut in amiter joint and held
together by corner pieces. The corner pieces have threaded pins that fit through borings at
the ends of the aluminum bars. Wing nuts ensure easy set-up of the frame. The frameis
sturdy and can be stepped upon to hold it down on the stream bottom in fast flow. In
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Fig. 4.5: Coarsening of the D44, Dsg and Dg, 0n fine gravel beds and fining of the D5y and Dg,4 on cobble
beds for heel-to-toe sampling compared to sampling along a measuring tape with a spacing of the Dy
particle size b-axis length. Stippled lines indicate best-fit regression lines. Data from Wohl et al. (1996).

order to make the frame easier to assemble and to transport, the parts can be reduced to a
length of 35 cm, yielding 8 pieces that snap together with a spring and bolt mechanism
(Bunte and Abt 2001) (Fig. 4.6 b).

Small dots cut in 5 cm increments along the outside edges of the frame hold thin white
elastic bands in place that are stretched horizontally across the frame. Together with
elastic bands stretched in a vertical direction, agrid with four or more cross-pointsis
defined. The spacing of the grid pointsis adjusted to a size equal to or larger than the
Drex particle size.

Using the sampling frame

To use the sampling frame in the stream, a tape measure is stretched from bank to bank.
The sampling frame is placed onto the stream bottom so that one of the corners aligns
with even-spaced marks on the tape, e.g., every three feet or one meter. Grid points
derived by the elastic bands are used to visually define the particle to be selected. If the
flow isdeep and fast, and vision is blurred, looking at the grid intersection can help
identify the particle to be included in the sample. If, for example, the grid intersection
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is between two cobbles, the operator knows that a small intertitial particle should be
selected, but neither of the cobbles.

If flow istoo deep or too fast to see the particle under the grid intersection, the particle to
be included in the sample has to be identified by touch. A pointed index finger is placed
in acorner of the grid intersection, and vertically lowered onto the sediment surface. The
grid intersection serves as a guide for the position of the finger asit islowered to the bed
surface. Using the grid intersection as a reference point as opposed to the tip of the boot
hel ps the operator select a particle more representatively because the operator worksin a
more comfortable posture when bending down to the sampling frame as opposed to
bending down to the tip of the boot. The elastic bands in the sampling frame do not
hinder the removal of a particle from the streambed. Particles are collected from under all
four grid points, measured with atemplate, and placed back approximately into the same
position from which they were taken. The frame is then moved to the next position along
the tape. For many coarse gravel-bed rivers, a 30-cm grid within a 60 by 60 cm frame
placed at 1 m, or 3 feet increments along the tape will be adequate. The sampling frame
can be used on both sides of atransect. Individual transects should be 3 - 4 m apart to
avoid overlap between sampled areas.

Comparison of sampling results between sampling frame and heel-to-toe walks
Particle-size distributions obtained from using the sampling frame and from sampling
with heel-to-toe walks were compared in samples obtained on a poorly sorted cobble-bed
stream (s= 1.7 ¢) with a Dsp of 69 mm (Bunte and Abt 2001). Each of two experienced
operators performed two pebble counts over the same river reach, one pebble count using
the sampling frame and one collecting a heel-to-toe sample. Sample size ranged between
470 and 570 particles per sample.

A comparison of the frequency distribution for both sampling methods shows that
samples from the sampling frame contained alarger number of cobbles than samplesfrom
heel-to-toe walks (Fig. 4.7). The heel-to-toe samples comprised alarge number of mid-
sized gravel in the size class 45 and 64 mm and generally fewer cobbles. This

difference clearly demonstrates an operator bias against cobbles and bouldersin heel-to-
toe samples, while large, handy particles were favored instead. For inexperienced
operators, the difference is expected to be even more pronounced.

Sampling frame reduces variability between operators

Two operators sampling the same transect using the heel-to-toe method are very likely to
produce different particle-size distributions, especially if the operators are of different
stature (Fig. 4.7). Using the sampling frame largely reduced the variability between
operators, because it eliminates operator decision on the selection of cobbles and boulders
and equalizes the sampled stream width, aswell as the number of particles sampled by
both operators. Consequently, both operators who had markedly different distributionsin
heel-to-toe samples (Fig. 4.7), produced very similar particle-size distributions when

using the sampling frame (Fg. 4.8). The percentile particle-sizes of the Dsp to Dgs
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Fig. 4.7: Difference in frequency distributions obtained for heel-to-toe sampling and the sampling frame
(both operators). The size class < 2 mmis not included in the analysis.

differed by less than 5% between operators, whereas the percentile difference for the Ds
to Dgs ranged from 7 to 22% when both operators sampled with heel-to-toe walks (Fig.
4.9).

Quantification of sample variability due to operator error

In order to estimate the magnitude of the operator error when using the sampling frame,
the total error incurred in samples from the sampling frame was compared to the statistical
error computed by Rice and Church (1996) for alarge sample from gravel-bed river
samplein Section 4.1.1.3 (Fig. 4.2). A set of 10 samples collected by the authors of this
study in several gravel- and cobble-bed streams using the sampling frame was available
for this comparison. The sorting coefficient s for the 10 samples ranged between 0.97
and 1.64, and sample sizes n between 309 and 469. The mean sorting coefficient of 5 =
1.26 of these 10 samples was similar to the standard deviation of the Mamquam River for
which Rice and Church (1996b) computed the relation between sample size and statistical
error with a bootstrap approach. Likewise, the mean sample size of 426 was similar to the
sample size of 400 for which the statistical error around various percentilesis shown in
Fg. 5.10 and 5.11.
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In order to compute the operator error for each sample collected with the sampling frame,
each of the 10 samples was split in two: subsample a comprised the 1%, 39, 5 ...
recorded particle size for each transect, while subsample b comprised the 2™, 4™, 6™, ...
recorded particle size. The percent error eypp around percentiles was computed using a

standard sampl e-si ze equation eypp = (1.96 - s/u)/\/ﬁ (Section 5.2.1), where u isthe mean
of the two subsample percentiles analyzed, e.g., (Ds() + Dsp))/2.

Sampling with the frame yielded an average relative error around the Ds of + 30%
between samples (Fig. 4.2). Thisisstill higher than the statistical error of + 20%, but a
considerable improvement over the high variability of + 50% error or more for the Ds
obtained from heel-to-toe sampling. The reduced error for the Ds suggests that the
sampling frame indeed reduces operator variability in the identification of small particles.
Using the sampling frame cannot completely eliminate operator error because frame does
not prevent inaccurate particle retrieval. For all other percentiles, the operator error
computed for the sampling frame samplesis similar to the purely statistical error
computed by Rice and Church (1996b), suggesting that the sampling frame does largely
eliminate operator errors and thus inter-sample variability in all but the smallest particle
Sizes.

4.1.1.7 Measuring, recording and analyzing pebble count data

Pebble counts are usually a two-person operation: one person selects and picks up a
particle from the streambed, measures its b-axis, preferably with atemplate (Section
2.1.3.6) and places the particle back onto the streambed in the location where it was taken.
The second person records the particle size in anotebook. Voice activated tape recorders
may be an option for datarecording if a person works alone. However, the background
noise from the water flow in mountain gravel-bed streamsistoo loud to allow arecorder
shut-off and thus causes a lengthy record.

For many purposes, particle sizesin pebble counts are best measured with atemplate
(Section 2.1.3.6) that hasa 0.5 @ gradation (Section 2.1.2). Smaller or larger @ gradations
may be appropriate in some studies or stream situations. Particlesfiner than 2 mm are
usually not differentiated in size, but tallied together as a single size-class finer than 2
mm. Some studies use aruler or caliper to measure particle axes to the nearest mm
(Section 2.1.3.7). Thisshould only be done if the range of measured particle sizesis
small, if anear-normal distribution of particle sizesin terms of g@units cannot be assumed,
or if all particle axes are measured (Section 2.1.3.7). Measuring the particle b-axiswith a
ruler is not recommended as a substitute for template measurements. Using templates not
only reduces the variability in particle-size measurements between operators, but also
ensures comparability of the measurements with data obtained from using standard
square-hole sieve sets.

When the measured particle sizes are recorded, the note taker should use a separate
column for each transect in order to allow tracing back the approximate location of each
recorded particle size (Table 4.3). This can be helpful in identifying systematic spatial
variability of particle sizes. Information can be lost when recording particle sizes astick
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Table 4.3: Example of a sampling form for pebble counts

Stream: Sqguaw Creek  Reach: 100-150 w downstream of Spire Rock Campgronnd Bridge

Date: July 8, 1996 Person sampling: _Jack Brown Person recording: _Jz// White
Particle size measurements: Template in 0.5 ggradation; Calipers (y¥es/no); Ruler (¢es/no)

Select one: x Largest size class (mm) through which particle cannot pass (larger than)
____ Smallest size class (mm) through which particle can pass (smaller than)

Stream morphology:_uostly plane bed, small plunge pools, some riffles and rapids

Banks within reach: LB steep, ca. 0.5 m incised into meadow: RB gentle sloping, sandy

structure and packing: _Lurge particles wedged. some clusters, little imbrication

Particle shape: _mostly ellipsoid. some discs, subrounded: cobbles and bonlders mostly angular

Lithology: _70% andesite and other voleanic rocks, 20% sedimentary, 10% gneiss

Remarks: used sampling frame with grid spacing of 0.3 m

Sketch of sampling site:
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marks in the respective size class of asampling form. A sequential datarecord isalso
necessary if asampleisto be split for a statistical error analysis (Section 5.2.1 and 5.2.2).
Mention of the water line and whether a particle was collected bankward or waterward
from the water line isimportant because it facilitates the decision to either include or
exclude fine particles near banks from the analysis, an option that depends on the study
objective. Field forms and field books are further discussed in Section 4.5.

Particle sizes are analyzed based on the frequency-by-number of particles per size class.

A cumulative percentage frequency distribution is computed from the measured particle
sizes, and particle-size percentiles, such asthe Dsp or Dgs (Sections 2.1.4.1 and 2.1.4.2), or
the % fines smaller than 2, or 8 mm (Section 2.1.5.8) are determined. Particle-size
parameters may be computed from the frequency distribution or from percentiles of the
cumulative frequency distribution (Section 2.1.5).

4.1.2 Grid sampling

In grid sampling, particles are measured from under a presel ected number of grid points
that cover a predefined sampling area. Particles can be physically picked up from under a
grid laid directly on the streambed surface, and in this case, agrid count isactually a
pebble count. Pebble count procedures are described in Section 4.1.1. Another form of
grid count isto take vertical photographs of the sediment surface, and measure particle
sizes under a grid superimposed on the photograph. Both physical grid counts (pebble
counts) and photographic grid counts can be performed at a variety of different spatial
scales.

4.1.2.1 Grid sizes and spatial scale

Grid counts can cover sampling areas of any shape aslong asthe grid is evenly spaced.
The gpatial scale of grid countsisflexible. The smallest grid unit is determined by the
coarsest particles on the sediment surface. Grid spaces should be at least aslarge asthe
Dnex particle size, or even better twice the Dy, in order to avoid double counting and
serial correlation (Section 4.1.1.2). A gravel surface with a Dmax 0f 100 mm requires at
least a0.1-m grid. A grid of this size can be set up by rubber bands spanned across the
sampling frame (Section 4.1.1.6, Fg. 4.6). Minimum sampling area for a sample size of
400 particles for this grid spacing is4 m?. A cobble surface with a Direx 0f 256 mm
requires at least a 0.25-m grid, and the minimum area for sampling 400 particlesis 10 m?.
At this scale, grid points can be marked by parallel transects along a measuring tape. The
Iaggest extent for agrid count isan areal overview that extends over areach of several 100
m-in.

4.1.2.2 Photographic grid counts

A grid count can be performed on a photograph taken vertically over the sediment surface.
The photograph is superimposed with a grid, and the projected b-axis length of particles
under the grid points is measured with aruler or planimetrically (Section
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4.1.3.3). The measurements are converted to the natural scale of the particles by an
appropriate scale factor before a particle-size analysisis done.

Scales of photographic grid counts vary with the desired resolution of the photograph, the
coverage for each photograph, and the coarseness of the bed. Each scale facilitates
analyzing a certain range of particle sizes. If abroad particle-size spectrumisto be
analyzed, areal photographs need to be taken at various scales.

Scale, resolution, and areal coverage of the photograph

A photograph with aside ratio of 1:1.5 covers an area of approximately 0.5 m by 0.75m
=0.35 m?, if taken by a standing person at a distance of about 1.3 m, when using 24 by 36
mm negatives, and a standard 50-mm camera lens. The smallest distinguishable particle
size of such photographsis about 2 mm (Bunte and Poesen 1993). Coverage of larger
areasis desirable on coarse gravel surfaces. This can be obtained by cameras with lenses
that have wider angles (e.g., 35 mm), or by creating a larger distance between camera and
the ground. A 35-mm lens leads to distortion at the edges of the photograph, but isa
compromise to the otherwise greater camera height required for alarger areal coverage.
With a 35-mm lens, camera height equals the natural length of the longest side of the
photograph. For example, to cover areasof 0.9 by 1.4 m, 1.33by 2m, orof 2by 3mona
photograph, camera height needs to be 1.4, 2, and 3 m, respectively (Ibbeken and Schleyer
1986). The smallest distinguishable particle size for a coverage of 1.33 by 2 mis
approximately 10 mm, but the resolution depends on the quality of the photograph (see
discussion below). Severa photographic scales may have to be used to analyze all
particle sizes within areach.

For camera heights of 1.4 m or more, the camera can be mounted either to the underside
of awide legged tripod, or the underside of a pyramid-shaped frame especially designed
for this purpose. The bottom part of the pyramid is connected to arectangular frame
(ground frame) that outlines exactly the area covered by the photograph. A cm scale,
preferably in black and white stripes like on a surveyor’ srod, is attached or painted to the
bottom part of the ground frame to serve as a scale in each photograph. Each photograph
requires some form of identification. An electronic or mechanical remote control is
needed to operate the camera shutter if the camerais mounted out of reach and thefilmis
advanced with an automatic winder.

If an entire stream reach is to be photographed on a scale so that each photograph covers
approximately 1 m?, consecutive photographs should not overlap, but be exactly adjacent
so that particles at the edge of photos are neither excluded from the analysis nor counted
twice. The correct position required for neighboring ground frames can be determined
with atape measure and small pins or flags that mark the corner positions of the ground
frame.

Photography experience is essential to produce usable pictures under poor light

conditions. Single-lens reflex cameras with adjustabl e aperture and speed tend to produce
better pictures than fully automatic “point and shoot” cameras. A high speed
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film (400 ASA) that facilitates a short exposure time to prevent blurring in hand-held
photography is not unconditionally recommended because of its graininess. 100 or 200
ASA filmsare less grainy, and these films are ideal for sunny weather when short
exposure times of 1/125 s can be used or for mounted cameras. Photographs should be
taken around mid-day to minimize shadows around large particlesin which small particles
could be undetectable. Dark conditions, such as under forest canopy, require long
exposure times of perhaps 1/8 of a second, and a camera stand to avoid blurring. Prints
should be developed with low contrast to span alarge range of gray tones or color shades,
and be enlarged to about 18 by 24 cm.

Grid setting

A grid may be placed directly onto the sediment surface before the photo is taken
(Kellerhals and Bray 1971), but thisis not recommended because the physical grid may
obscure small particlesfrom view. A better alternative isto take a dide photograph of the
sediment surface and project the dide onto a screen with grid lines. Such a*screen” can
be aletter-sized or larger piece of paper with grid lines printed on it. The dideisthen
projected onto this screen from a close distance (Bunte and Poesen 1993). The grid line
spacing should match the Dy particle size in the selected projection scale to avoid serial
correlation and double counting (Section 4.1.1.2). If, for example, the largest particlein
the projection is 2 cm, then the grid spacing should be at least 2 cm aswell. A letter-sized
piece of paper has about 13 by 10 = 130 grid pointsin a2 cm grid.

b-axes measurements on photographs

If particleslieflat with the b-axis plane parallel to the photographic plane, the short
particle axis visible on photographsis the particle b-axis. The simplest way to measure b-
axes lengths of particles under grid pointsiswith aruler. Ruler measurements are
suitable if the number of photographs to be analyzed isrelatively small. If particle sizes
span anarrow range only, or if measured b-axes lengths are not tallied in @units, b-axes
lengths are measured to the nearest mm. If particle sizesareto betallied in 0.5 gunits,
ruler-measurements can be ssimplified if the mm equivalent of all size classesin 0.5 ¢
units (larger or smaller class sizes for some studies) is computed based on the scale of the
photograph. Once the mm-equivalent for 0.5 @size classesis known, ruler measurements
only need to determine the 0.5 @size classinto which a b-axislength falls. Ruler
measurements of b-axes on photographs correspond to sieve results from round-hole
sieves and need to be converted before they can be compared to standard sieve results
from square-hole sieves (Section 2.1.3.4 and 2.1.3.5).

A particle-size analysis from a photographic grid count produces a grid-by-number (i.e.,
frequency-by-number) particle-size distribution. Measuring the b-axes of all particles on
the photograph constitutes an areal sample, which is adifferent sampling technique and
resultsin adifferent particle-size distribution. Areal sampling is discussed in Section
4.1.3.3.
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Errors from misreading the ruler, or from miscomputing measurements can be avoided by
using an optical particle-size analyzer (Ritter and Helley 1969) to measure particle b-axes.
Thisinstrument projects an adjustable circle of light onto the photograph of a gravel
surface. The size of the light spot is adjusted to match the apparent b-axis of a particle.
An activated foot switch then registers the diameter of the circle in the instrument and
marks the particle just analyzed. After all particles have been measured, asize
distribution is computed.

Errorsin b-axes measurements resulting from particles that are partially hidden from
view, or when the b-axis planeis not parallel to the photographic plane can be mitigated
when measuring particle b-axes planimetrically using computer digitizing equipment
(Ibbeken and Schleyer 1987). Thistechniqueisdescribed in Section 4.1.3.3.

Potential errors of photographic b-axes measurements

If al particle b-axes on the photograph are fully visible and parallel to the photographic
plane, the photographic distribution is similar to the distribution obtained by physically
measuring the b-axes of all surface particles of the deposit with aruler. However, neither
the photograph, nor the sedimentary structure is alwaysideal for photographic analyss,
and the farther conditions are from ideal, the larger the deviation between photographic
and physical b-axes measurements.

The particle b-axes |engths measured on a photograph and converted to their natural size
using the appropriate scale factor tend to be smaller than b-axes lengths measured on the
actual particles. Thisisdue to severa factors: the b-axes length may not be fully visible
on the photograph when particles are embedded or partialy hidden by other particles.
The projected b-axisis also shorter than the natural b-axisif the particle does not lie flat
(b-axis plane not parallel to photographic plane). Thus, photographic grid counts are
problematic on imbricated and clustered surfaces.

The question of whether this discrepancy is dependent on particle size has been debated
and probably depends on the shape and orientation of the particles on the sediment
surface. Kellerhals and Bray (1971) found that the mean particle size on photographic
analyses was 5 mm smaller than that obtained by sieving. This discrepancy could be
corrected by adding 5 mm to all photographically determined particle sizes. A constant
difference of afew mm for al particle sizes could be conceivable for a surface on which
particles are bladed and lying flat.

Adams (1979) found that the discrepancy between photographic analysis and sieving with
square-hole sieves becomes larger with particle size. Therefore, the correction factor to
be applied for conversion of photographic b-axes and photographic percentilesinto an
equivalent sieve size should be a constant fraction of a gunit. Excluding particles finer
than 8 mm from both photographic and sieve analysis, Adams (1979) suggested that 0.1 ¢
should be subtracted (or 0.1  be added) to make photographic grid counts comparable to
results from square-hole sieves. For analysisin mm units, the correction factor is

169



multiplication of the photographic b-axes lengths by a constant factor of 1.07 (Adams
1979).

In some deposits, the a-axisis easier to identify on photographs than the particle b-axis.
For such surfaces, Adams (1979) suggested computing a particle-size distribution of a-
axes lengths. Thisdistribution is then converted into an equivalent distribution that would
have been obtained had the particles been sieved using square-hole sieves by adding 0.45
@units (or subtracting 0.45 ( units) to all photographic particle-size percentiles. Such a
procedure is only recommended if the axisratio a/b is constant within and between
particle-size classes.

Both manual pebble counts and small-scale photographic grid counts covering
approximately 1 m? per photograph are prone to bias against fines. The resolution of the
photograph may not be sufficient to identify particles as fine as 2 mm, and some of the
small particles might be overlooked on the photograph because they are located in
shadows between large particles. Both factors cause bias against fines and a particle-size
distribution that is coarser, particularly at the fine end, than the true distribution. In order
to avoid bias against invisible fines, it might be necessary to exclude particles finer than
10 or 20 mm from the analysis, depending on the scale and the quality of the photograph.

In summary, photographic grid counts facilitate non-destructive sampling of gravel- and
cobble beds and substantially reduce field time. Thus, photographic grid counts are a
good choice if field time must be short, although time is needed for analyzing the
photographs. A disadvantage of photographic grid countsisthat the lengths of the scale-
adjusted a- and b-axes measured on the photograph tend to be smaller than the actual
particle a- and b-axes, and that fines tend to be overlooked. Thisis due to non-horizontal
particle orientation and shadows on the photograph. Numerical factors correcting for
these discrepancies vary depending on the shape and orientation of particles on the
sediment surface. Thus, photographic grid counts are best applied when particles are
lying flat and are fully visible, when high-quality photographs can be obtained, and when
the fine part of the particle-size distribution may be neglected in the study.

4.1.3 Areal sampling

Definition, sample area, sample size and number of samples

For areal surface samples, the operator collects all particles exposed on the surface within
a predefined area, which istypically an area of about 0.1 - 1 m2. Sampling all surface
particles without including any subsurface particles can be problematic. Not only isit
conceptually difficult to determine how much hiding istolerable for a surface particle, but
itisaso physicaly difficult to retrieve all surface particles without leaving some surface
particles unsampled and without starting to sample subsurface particles. This sampling
problem becomes more pronounced as the range of particle sizes increases, and as the
particle packing deviates from a simple side-by-side arrangement with b-axes planes
parallel to the bed surface.
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A variety of methods have been proposed for particle retrieval in areal samples:

e Manual picking, lifting, and scraping,
 Adhesives (contact and penetrating), and
* Non-destructive methods (photo sieving, visual estimate, and wax imprints).

These methods are discussed in greater detail in the following sections. Some of the
techniques are more suitable for fine gravel, others are better suited for coarse gravel.
Sampling results from different areal sampling procedures can vary greatly. Thisis
because gravel bed-material usually has a coarse surface layer overlying a deposit richer
in fines, and each of the areal procedures collects surface particles down to adlightly
different depth. Consequently, each method includes a different percentage of small
particles partially hidden between large clasts.

Areal samplestypically cover an areaof 0.1 — 1 m® per sample. The number of particles,
or the sample volume obtained from areal samples of that size, may provide sufficient
material for ameaningful particle-size analysisif the bed is comprised of fine gravel, but
not for a bed of coarse gravel (see Section 5.3 and 5.4 for size of an individual sample).
In coarse beds, areal samples should be repeated several times within an area of
homogeneous bed material until a sufficiently large amount of sediment has been
collected for a statistically meaningful size analysis. Note that even if one areal sample
provided sufficient material for a statistically meaningful size analysis, one sample only
characterizes areach if the bed material within the reach is spatially homogeneous. This
israrely the case. Several samplesarerequired if the bed-material sizeis spatially
inhomogeneous. The number of samples necessary to characterize a reach increases with
the degree of spatial variability of the bed-material size and may be determined using a
two-stage sampling approach (Section 5.3.2)

Areal samples may be analyzed either on aweight- or as a number-based frequency. Both
particle-size distributions, area-by-weight or area-by-number, are different from weight
frequencies obtained in volumetric samples (volume-by-weight) or the number
frequencies obtained in pebble counts (grid-by-number). To be comparable with pebble
counts or volumetric samples, particle-size distributions of areal samples need to be
converted to a volume-by-weight or grid-by-number sample. Conversionisaso
necessary to compare areal samples obtained by different methodol ogies, and even to
compare areal samples obtained by the same methodology (Diplas 19924). Sample
conversion isdiscussed in Sections 4.3.1 and 4.3.2.

4.1.3.1 Manual sampling

Hand picking on coarse gravel surfaces

Hand-picking is the method of choice for areal sampling on coarse gravel beds. The
operator outlines the sampling area with aframe (e.g., lawn edging) and hand-picks all
surface particles within the area (Billi and Paris 1992). The smallest particles are most
difficult to assign to either the surface or the subsurface sediment, particularly when small
particles are difficult to see and to retrieve in between large clasts or are partially hidden.
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Although small partially hidden surface particles can only be seen and retrieved after large
surface particles have been removed, generally the smallest particle should be picked first.
This procedure may leave some hidden surface particles unsampled, but if large particles
are removed first, it isamost impossible to determine whether remaining small particles
belong to the surface or whether they lay under alarge particle already removed and thus
belong to the subsurface. Picking the smallest particlesfirst and then continuing with
progressively larger particles ensures that only exposed surface particles are included in
the sample (D. Rosgen, pers. comm.).

Lane and Carlson (1953) suggested differentiating surface from subsurface particles by
marking surface particles with spray paint. Church et al. (1987), however, note that spray
paint does not unequivocally identify surface particles because the paint might run down
the side of rocks and infiltrate into the subsurface sediment.

The strict distinction between surface and subsurface particles becomes even more
problematic when hand-picking particlesin areal samples under water because one can
only feel but not see the sediment surface. A bias towards large particles ensues when
only undisputed, large surface particles are picked. Scraping all surface particlesin an
effort not to overlook the finer particlesis likely to include fine subsurface particles and
may cause a bias towards fines.

Surfaceswith fine gravel and sand

Fine gravel and sand cannot be hand picked. Surface particles could be scraped, whichis
arather indiscriminate procedure, or individual particles could be picked up with
tweezers. A lesstedious method isto coat surface particles with magnetic paint (Spray
paint with magnetite dust) and then lift all coated surface particles with a strong hand-held
magnet (Wilcock and Stull 1989). Usually, adhesive methods are used for fine gravel.

4.1.3.2 Adhesive sampling

Adhesive methods may be used for areal samples of gravel surfaces that contain particle
sizes between sand and coarse gravel. Adhesive methods are particularly recommended
for surfaces that contain relatively large amounts of sand and fine gravel. The generd
procedure for areal adhesive sampling isthat a board covered with an adhesive is pressed
onto the gravel surface. The adhesive penetrates the sediment surface and touches all
surface particles, both large and small. When the board islifted off the surface, surface
particles adhere to the adhesive. For asize analysis, sampled particles are separated from
the adhesive, by dispersing or dissolving the adhesive, or by brushing and scraping
particles off. Cured epoxy makes an inseparable bond with the particles and requires a
thin section analysis.

A variety of substances have been used as adhesive, including all-purpose glue, epoxy

resin, mud, clay, soap, grease, wax, putty and flour paste (e.g., Little and Mayer 1976;
Gomez 1979; Ettema 1984; Diplas and Sutherland 1988; Diplas 1992a; Diplas and Fripp
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1992; Gessler 1992; Marion and Fraccarollo 1997). The selection of an adhesive depends
on several factors which include the depth of penetration required for a deposit of a given
particle size and sorting, whether the sample isto be wet-sieved right at the stream site,
whether the sample needs to remain undisturbed during transport, or whether it isto be
analyzed by thin-section analysis. Most adhesives stick only to dry surfaces. Gomez
(1983a) used a freeze technique whereby the surface particles froze to plastic wrap cooled
by liquid nitrogen. This technique could be used on wet and dlightly inundated river beds.

The requirement of areal samplesto sample all surface particles, and to sample surface
particles exclusively can lead to the following dilemma. Adhesivesthat barely penetrate
the surface ensure that only surface particles are sasmpled, however, by not reaching the
bed-surface plane, small intersticial surface particles are probably not sampled in their
entirety and are underrepresented in the sample (Fig. 4.10, a, b and ¢). By contrast,
adhesives that penetrate the surface sediment deeply ensure that all surface particles are
sampled, but subsurface particles may falsely be included in the sample aswell (Fig. 4.10,
e), resulting in a semi-volumetric sample. Accurate areal samples require that the
adhesive penetrates the surface to the appropriate depth (Fig. 4.10 d), which isthe bed-
surface plane. Deep penetration of the adhesive is required to reach the bed-surface plane
in coarse and poorly sorted gravel beds, while less or dight penetration sufficesin fine
and well sorted beds.

Obtaining the right penetration depth for a given sediment

The appropriate penetration of the adhesive to the bed-surface plane can be obtained in
two ways: by selecting an adhesive with an appropriate viscosity and plasticity, and by
controlling the penetration depth through the method with which the adhesive is applied.
The degree of viscosity determines the flow rate of the adhesive (that may range from thin
glueto stiff pottery clay). The degree of plasticity determines how well the adhesiveis
pliable to the surface particles (that may range from very soft grease to putty). In order to
control the depth of penetration, an operator may vary the thickness of the adhesive
coating, the pressure exerted when bringing adhesive and sediment into contact, and the
flexibility or rigidity of the background onto which the adhesive coating is spread.

Penetration of the adhesive can be deepened by using thin or soft adhesives, and by
applying thick coatings of adhesive with moderately high pressure from aflexible
background. Penetration depth can be lessened by using a somewhat less pliable
adhesive, and by applying thin coatings with slight pressure from arigid background. The
same adhesive applied in the same manner to bed material of different sizes and sorting
coefficients leads to different sampling results.

Fig. 4.11 combines the three variables of adhesive properties, sedimentary properties, and
mode of application, and suggests how adhesives of different penetration properties can
be combined with application modes that result in different penetration depthsin order to
achieve the right penetration depth required for accurate areal samplesin deposits of
different particle sizes and sorting coefficients.
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Bed
surface

Fig. 4.10: Sampling properties of adhesives with coatings of different thickness, applied to different
backgrounds, their viscosity, and different sampllng properties on a poorly sorted bed that includes sand and
gravel. Q Sampled surface pamcla g / Wrongly unsampled surface particles;

D subsurface particles; ¢Z_» Wrongly sampled subsurface particles; [ Adhesive; zzzBacking.

I nsufficiently thin coating of adhesive applied to aboard (a) and atextile (b); Thick coating of adhesive, but
too little penetration (c); appropriate penetration (d); too much penetration (€).
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Adhesive properties

Deep penetration potential:

Soft or thin

e Soft clay

e Flour “batter”
e Glue, epoxy,

e Soap, grease.

L ow penetration potential:

Siff or firm

e Stiff clay,
*  Flour “dough”,
°  Putty.

|

Sedimentary properties

Fine and coarse
gravel

Bed

surface

plane
Deep to low
penetration required

Poorly sorted gravel Well sorted
(Sand & fine gravel) coarse gravel
Deep penetration Deep penetration
required required

Well sorted
fine gravel

Low
penetration
required

Sand and fine
gravel

‘overe R

Deep to low
penetration
required

Mode of application

Deep penetration:

*  Thick coating,

* Mod. pressure,

* Fexibleor rigid
background

Low penetration:

e Thin coating,

o Slight pressure,

* Rigid background

Fig. 4.11: Interrelation between adhesive properties and their potential depth of penetration, the mode of
application, the resulting depth of penetration, and the sedimentary properties with their required penetration
depths. Note that modifiers such as soft, stiff, deep, low, thin, and thick are relative.
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Testing

The accuracy of a sampling procedure obtained from the combination of a particular
adhesive and the particular mode of application should be tested before it isused for a
study project. This could be accomplished by carefully coloring the surface particles with
an appropriate paint. All colored particles should adhere to the adhesive, while none
should remain on the streambed. The adhesive and/or the application technique should be
modified until all surface particles can be accurately sampled.

A sampling error on the fine sediment end (missing surface fines or wrongly including
subsurface fines) is more difficult to determine and to correct than errors that result when
large particlesfall off asthe adhesive islifted off the surface. When in doubt, select an
adhesive and an application technique that is most suitable for sampling the fine surface
particlesin voids between large particles. If the sampling area contains afew
disproportionately large particles or narrow voids, it might be helpful to do some
preparation work. An application of adhesive material around large particles or into small
voids before the adhesive is generally applied to the sample area makes small particlesin
voids between large particles more accessible to the adhesive.

Operator variability

Areal samples are highly prone to variability between operators, because each operator
has a dightly different way of adhesive preparation, or in application technique. Thus,
one operator should do all the adhesive preparation, while another operator takes all the
samples. Variability between operators should be tested and minimized before multiple
operators take areal samples within the same study.

Separation of sampled particles from the adhesive

Properties of the adhesives determine how sediment and adhesive are separated after the
sampleistaken. Adhesives may be dispersible or soluble in water, or in solvent.
Adhesives may remain largely inert, harden over time, or cure. Thisrequires different
methods of separating the sampled particles from the adhesive, and different methods of
particle-size analysis. An overview of these factorsis presented in Table 4.4.

Soft clay, and flour batter are dispersible in water. The dispersion is discarded through a
sieve with a mesh size smaller than the smallest sampled particle size. A similar
procedure can be applied to water-soluble, uncured all-purpose glue and to solvent-
soluble grease. If stiffer clay, and flour “dough” is used as an adhesive, sampled particles
can mostly be brushed away. If alittle scraping is necessary, the sample needsto be
washed or wet-sieved to eliminate the clay or the flour from the sample.

The clay, or the flour dough, can be reused for another sample if a moist wrap keepsthe
clay or flour dough from drying. If no future use is planned for the adhesive, or if
samples cannot be processed soon after the field work, the clay and flour dough adhesives
can be allowed to harden. Sampled particles from hardened clay or dough are retrieved
by brushing and scraping. A thin-section technique isrequired for particle-size analysis
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Table 4.4: Adhesives and their properties, method of particle separation from the adhesive, adhesive
reusability, and method of particle-size analysis

Adhesive Adhesive Method of Reusahility Method of particle-
Property separation of adhesive size analysis

soft clay, sticky, runny, disperse or dissolve not intended wet or dry sieving

flour “batter”, dispersible, adhesive in water

uncured glue water soluble

gresse sticky, dissolve adhesive none wet or dry sieving
solvent soluble in solvent

stiffer clay*, firm, inert brush and scrape off reusable wet or dry sieving

flour “dough”*, *in moist wrap sampled particles

putty, wax

stiffer clay, hardens without brush and scrape off not intended wet or dry sieving

flour “dough” moist wrap sampled particles

€poXy resin, curable visual separation none thin section analysis

all-purpose glue only

of areal samples obtained by epoxy resin or glue that was allowed to cure. The plane of
the cut should be exactly at the bed-surface plane, otherwise surface particles are wrongly
excluded, or subsurface particles are wrongly included in the analysis.

Advantages of clay and flour paste as adhesive

Using clay (Diplas and Fripp 1992) or flour paste (Gessler 1992) as adhesive has several
advantages besides being affordable, generally available, and non-toxic for the operator.
Four dough or batter can be mixed with water to obtain a desired degree of viscosity and
plasticity. The mixing result is basically reproducible (write down exact proportions of
wet and dry ingredients, and manufacturer), although the consistency may vary dightly
with air humidity. Since flour dough or batter can be prepared in the field, it can be
prepared to the appropriate consistency for a given deposit. Mixing clay from powder, or
changing the moisture content of moist clay in order to change its viscosity and plasticity
takes more time, so ready-to-use clay of different consistencies should be brought to the
field site. The possibility of mixing flour dough or batter to the right consistency, or using
clay of just the right consistency for a given deposit provides a good chance of producing
accurate and unbiased sampling results.

Clay and flour paste are two of the few substances that adhere to wet surfaces. Clay can
be used for under water sampling. For multiple use, the clay surface needs to be well
scraped between samples to provide afresh surface for the next sample. Clay and flour
paste provide two options for separating the sampled particles from the adhesive. The
adhesive matrix can be dissolved and the sampled particles wet-sieved, or particles can be
mechanically brushed off the clay surface and collected (see above). Both methods can
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be performed at the field site. Dispersion has the advantage that no clay or flour batter
needs to be hauled back to the lab. However, dispersed clay or flour should not be
discarded into a stream as it may clog interstitial spaces and impair streambed habitat.
Brushing particles from the clay or dough slab and reconstituting the adhesive surface for
anew sample saves material and has the advantage that only the material for afew
samples needs to be carried to the stream site. Clay or flour dough that is kept in a moist
wrap can be reused for sampling at alater time. To delay or prevent flour dough from
getting moldy with time, substitute water with vinegar, or freeze the dough.

4.1.3.3 Photographic areal sampling

For photographic areal sampling, a photograph is taken of a sediment surface and the size
of all particles visible on the photograph is measured, either with aruler or planimetrically
(Section 4.1.2.2). Like manual or adhesive samples, particle-size distributions obtained
from photographic areal samples need to be converted before comparison with other
samples (Sections 4.3.1 and 4.3.2). Photographic techniques for analyzing particle sizes
off photographs are described in Section 4.1.2.2. Three different methods of particle-size
analysis can be used for photographic areal sampling:

* Measuring the b-axes of all particles,
» Planimetric particle-size measurements and analysis (photo sieving), and

» Empirical relation between the number of particles per photograph and a pebble count
Dsgo size.

Measuring b-axes of all particles on the photograph

The techniques of b-axes measurements with aruler or an optical particle-size analyzer
are discussed in Section 4.1.2.2. However, in contrast to grid samples that measure the b-
axes of particles under grid points only, areal samples measure the b-axes of all particles
visible on the photograph. Measuring all particle b-axes provides an area-by-number
distribution, i.e., the number-frequency of all particles contained within the sample area,
and this distribution is different from the grid-by-number distribution obtained from
photographic grid counts (Section 4.1.2.2). See Section 4.3 for conversion of
distributions obtained by different methods of sampling and analysis.

Planimetric particle-size measurements and analysis: Photo sieving

b-axes measurements on photographs with aruler or an optical particle-size analyzer
become relatively inaccurate if particle b-axes are partially hidden from view or not
parallel to the photographic plane (Section 4.1.2.2). Ibbeken and Schleyer (1986) largely
overcame this problem by developing a photographic particle-size analysis that attempts
to restore the third dimension of the particle lost in the projection from actual particle to
its photographic image. Particle shapes are assumed to be generally ellipsoidal for this
technique, and the best-fit ellipsoidal body isfitted into the outline of the particle shape on
the digitized photograph. This procedure improves the size determination of particles
partially hidden from view or with particle b-axes not parallel to the photographic plane.
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Computed particle volumes are converted to weight. Since this photographic procedure
produces a particle-size analysis in terms of frequency-by-weight similar to asieving
result, it is called photo sieving.

Photo sieving was devel oped for analyzing the areal surface particle-size distribution of
open framework gravel with empty voids between large particles. Ibbeken and Schleyer
(1986) used low contrast prints 18 by 24 cm, obtained from 24- by 36-mm negatives taken
with a 35-mm camera lens from 2 m above ground. Each photograph covered an area
1.33 by 2 m, and was large enough to identify particles as small as 10 mm.

A flow chart shows the various steps involved in photo sieving (Fig. 4.12). Thefirst step
in approximating particle volume isto outline the perimeter of each particle on the
photograph using a digitizer connected to a computer. A computer program fitsthe
longest possible axis L into the outlined particle area on the photograph and computes the
subaxes S; and S; that extend at right angles from both sides of L, so that the short axison
the photographed particleisS=§ and S (Fg. 4.13). An ellipsoidal shape is assumed for
al particles. The true particle b- and c-axes are not known, so the projected S-axisis
squared. S iscloseto the product of b - ¢, because Sislikely to be smaller than the
particle b-axis, but larger than the c-axis. Particle mass m, is computed from

Tt
M =Vy ps=gl S p (4.1)

where V, is the particle volume, and ps is the particle density.

Ibbeken and Schleyer (1986) used samples from various gravel surfacesto compare
photo-sieving results to results obtained from mechanical sieving with square-hole sieves.
All surface particles > 20 mm were painted or numbered in situ before a photograph was
taken. All painted or numbered particles were picked off the surface before the photo was
taken and sieved with a square-hole sieve set. For particles that were fully visible and had
compact shapes in the Sneed and Folk form-sphericity diagram (Fig. 2.23, Section 2.2),
photo sieving correctly predicted the true particle weight. Photo sieving tended to
overpredict the true particle weight when particles were platy and bladed, and
underpredicted the true particle weight of particles that were partially hidden on the
photograph (Ibbeken and Schleyer 1986). Particlesthat were allotted to different size
classes by photo sieving and mechanical sieving did not have different particle shapes,
thus particle shape has no effect on the assigned grain-size class. Consequently,
overprediction of the particle frequency of a specific size classis attributed to the effects
of particle position (i.e., the angle from which a particle is seen on a photograph). Particle
hiding causes an underprediction of the frequency of particle sizesin that size class.
However, when analyzing an entire photograph, many of these errors cancel each other.
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Optional: Calibration

a) shape factor

b) angle of orientation 4{ Outline a pebble image ‘{

c) roundness by

means of Fourier- Outline data

Analysis

‘ ‘ Determination of long axis L on photograph ‘

I
Determination of short axis S on photograph ‘
I

I 1
Determination of the volume of Determination of the ¢
ellipsoid of revolution about size-class of S
L having S as the minor axis |
L

I
Assignment of the volume to the corresponding size-class
and addition to the volume already existing in that class

?

no

Multiplication of the volume in each class by the density of quartz 2.65 g/cm3
I

Calculation of the percentage-distribution, cumulative percentage-

distribution, percentiles, grain-size parameters, etc.
I

Print of the percentage list, cumulative percentage-

list, percentile values, grain-size parameters
I
Plot of the histogram, cumulative curve

Fig. 4.12: Fow chart for photo sieving analysis. (Redrawn from Ibbeken and Schleyer (1986), by

permission of John Wiley and Son. Ltd.).

S:S;l"'Sz

T -

Fig. 4.13: AxesL, S, and S; fitted by computer into the outlined and digitized particle shape (a); Computer-
fitted ellipsoidal reference particle shape for computation of particle volume (b). (Redrawn from Ibbeken
and Schleyer (1986), by permission of John Wiley and Sons, Ltd.).
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A comparison between percentile particle sizes obtained from photo sieving and
mechanical sieving showed a good correl ation between the two sieving methods but did
have a systematic bias. Percentile particle sizes obtained from photo sieving were about
0.1 @units coarser than percentile particle sizes obtained from mechanical sieving (only
visible particleslarger than 20 mm were included in this analysis).

Over- and underprediction of particle weight or frequency per size class can be mitigated
intwo ways. Particle shape, position, and degree of hiding can be measured in the field
and this information may then be incorporated into the algorithm that computes particle
volume. Another approach isto develop an empirical factor from aregression function
that relates the percentile particle size of both sampling methods to each other. This
factor can then be used to fine-tune the correspondence between true particle weight and
the weight predicted from photo sieving.

As photo sieving outlines the particle shape and computes particle axes lengths, the
procedure can also be used to analyze particle-shape parameters such as roundness, and
sphericity. Photo sieving is also suitable to analyze bed-surface structures such as
clusters, aswell as particle orientation within arose diagram (Diepenbroek and De Jong
1994). Photo sieving is not well suited for fine sediment (sand and fine gravel) (Harvey
1987), unless photographs are taken from a close distance.

Photographs usable for photo sieving can be obtained from gravel beds deeply submerged
by water if an underwater camerais used (Ibbeken and Schleyer 1986). However, photo
sieving is not suitable for wadabl e streams, because taking a usable picture through the
water surface is difficult due to reflections on the water surface. A glass-bottom box may
be used when the water is deeper than 0.6 m and allows the investigator to photograph an
area of about 0.1 m? with a camera having a 50-mm lens.

Compared to field sampling and sieving, photo sieving reduces field time substantially
and is suitable for beds containing medium gravel, cobbles, and boulders. The effective
use of field time in photo sieving allows the study to sample alarge number of field sites,
and the decision on sampling location and sample size can be made by an experienced
person. However, adigitizer is needed for the planimetric analysis of particle shape, and
special programs need to be written. Once the system is set up, digitizing the photographs
isthe only time consuming part of the analysis (approximately 1 hour per photograph
covering 1.33 m by 2 m). Fully automated and correct particle recognition is conceivable
as the techniques required for improved particle boundary identification (gray scale
thresholding, edge growing and particle segmentation) are being developed (Butler et al.
2000).

Counting the number of particles per photograph and conversion to pebble count Dsg
A ssmple and fast, but relatively crude way of obtaining information on the bed-material
particle size from a photograph is to count the number of particles contained on the
photograph. The larger the number of particles (that exceed a preset threshold size) that
can be counted, the smaller the particle size of the photographed deposit. For a
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guantitative analysis, the number of particles on the photograph needs to be calibrated
against some field determined particle-size parameter that characterizes the average
surface particle size, such as a pebble count Dsp. The calibration function is then used to
predict the Ds, particle size from the number of particles countable on the photograph.

The counting method avoids any complications posed to photographic particle-size
analysis by irregular particle shapes, particle position, and partial burial. Rice (1995)
applied this method when analyzing downstream change in particle size over long stream
distances. For small streamsin the Pacific Northwest, the best fit relationship (r* = 0.99)
between the pebble count Dsg of particlesin the range of 20 - 200 mm and the number of
particles ngn contained within a photographed area of 0.25 m?was obtained by a
logarithmic function:

Dso = 396 - 62 In (ny), (4.2)

The parameters of the function vary with particle embeddedness and particle shape which
need to be the same for all photographs. The scatter of the data decreases as particle
shape and degree of hiding become more uniform. As many as 30 analyzed photographs
may be needed to define the calibration function. Therefore, the counting approach only
becomes economical if the study involves alarge number of field sites. Results of this
photographic analysis are, in principle, comparable to results of pebble counts, because
the photographic analysisis calibrated against pebble counts.

4.1.3.4 Photographic (areal) analyses in other scales

Intermediate scales of about 1 m? bed-area per print are not the only scale used for
photographic analyses. Close-up photographs covering about 0.1 m? can be used to
analyze detailed sedimentary structures, such as particle packing or the vertical structure
of bed material in a photograph of the sediment face. By contrast, areal overviews cover
about 100 m? and may be useful for analyzing bed-surface structures as well as for
streambed monitoring.

Photographic analysis of vertical sediment structure

Fraccarollo and Marion (1993) used photographic areal sampling techniques to analyze
the vertical structure of the sediment, such as vertical armor development and infiltration
of fines. A container deeper than the armor layer was placed into the bed of aflume and
filled with the same material asthe bed. It was assumed that the sedimentary structures
that develop during a flow event (armoring or infiltration of fines) are the same inside as
well as outside the container. After the armor layer development has started, the flow is
stopped. The container isretrieved, frozen, and the sediment block is vertically brokenin
half. The plane of rupture is photographed for a qualitative or quantitative analysis before
the two halves are reassembled, and placed back into the original channel-bed location.
After the sediment is thawed, the flume experiment can continue. The
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container is again retrieved for sediment analysis after the armor layer development or the
infiltration has progressed further. Inthisway it is possible to obtain information on the
vertical sediment structure during various phases of the armor development during a
single flume experiment.

Reach-spanning areal overview

An areal overview of ariver reach can be obtained if an auto focus camerawith a 32-mm
lensis elevated 10 — 15 m above the riverbed surface using a crane, or a helium-filled
balloon (Fig. 4.14), (Ergenzinger et al. 1999; Kozlowski and Ergenzinger 1999). The

Fig. 4.14: Areal view of a step-pool reach at the Schmiedlaine, Bavaria (FRG) taken with a 35-mm camera
mounted to atethered helium balloon. Balloon height is about 15 m. Length of surveyor’srod is3 m.
Flow direction is from upper left to lower right. (Photograph courtesy of B. Kozlowski and P. Ergenzinger,
Dept. of Physical Geography, Free University of Berlin, Germany).

area covered by one photograph in the format of 1:1.5 is 110 - 160 m? (about 9 by 12 m to
11 by 15 m). The smallest particles distinguishable on such photographs are cobbl es of
about 100 mm in diameter. Besides an analysis of cobble and boulder particle sizes, and
of bed surface structures, areal views provide a good opportunity to monitor change
within ariver reach. This can be a change in the bank line, change in patterns of scour
and fill, the displacement of individually marked large particles, or change in the size of
the area covered by gravel-sized and finer particles. Church et al. (1998) used elevations
of about 30 m to analyze bed surface structures such as stone cells. Their photographs
had a resolution of about 150 mm.
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Areal overviews should be taken with ample lateral overlap to account for lateral
distortion, aswell asfor the fact that the exact position of the photographed area cannot be
determined before the photograph is taken. Unfortunately, particles submerged by flow
are poorly or not at all visible, unlessthe water depth is very shallow, or light conditions
areideal. Thus, areal view photographs are restricted to analyses of the dry portions of
the streambed.

Summary and evaluation of photographic methods
» Photographic methods facilitate non-destructive sampling of the bed.

» Photographic methods minimize field time.

»  Photographic methods can be conducted at any spatial scale by changing the camera
height. Close-up photographs are used to evaluate small sedimentary structures
(particle packing and orientation), while photographs covering about 1 m? in size are
used for bed-material particle-size analysis. Areal overviewsthat cover an entire
reach are used to analyze large bed-surface structures or to monitor streambed change
(4.1.3.4). This makes photographic methods a versatile tool for analysis of bed-
material structures, documentation, monitoring, and historical records.

» Photographic methods can be applied to obtain information on surface particle sizesin
the form of grid counts (Section 4.1.2.2), as areal samples (Section 4.1.3.3) and asa
relation between the number of particles on the photograph and a pebble count Dsy.

» Photographic analysis through the water surface is usually impossible, but underwater
photography can be used when the water depth exceeds about 2 m.

* Photographic analysis often requires field calibration. Photographic measurements of
particle b-axes tend to underestimate ruler-measured b-axes in the field because
partially buried or hidden particle axes cannot be measured in their full length on
photographs.

» The photo-sieving method (Ibbeken and Schleyer 1986) improves the accuracy of
photographic particle-size measurements in deposits with partially hidden particles
and when the b-axis plane is not parallel to the photographic plane.

* Photo sieving tends to overpredict the weight of angular, platy and bladed particles,

and to underpredict the weight of partially hidden particles. Both errorstend to cancel
each other when analyzing large streambed areas.

4.1.3.5 Visual particle-size estimates

The fastest way to assess the local particle-size distribution isavisual particle-size
estimate. Several different techniques have been used for visual estimates.
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Percentage of surface area covered by particles of various size classes

F sheries studies often estimate the percent area covered by particles of various size
classes. The size classes used for thisanalysis are usually larger than the 0.5 g-size
classes. Plattset al. (1983), for example, differentiated between larger boulders (> 610
mm), small boulders (> 305 mm), cobbles (> 76 mm), gravel (> 4.8 mm), large fines (>
0.83 mm), and small fines (< 0.83 mm). A dominant size class was assigned to each 1-
foot section along a transect by visually estimating the particle-size class that covers the
largest proportion within that one-foot long section. The estimation processis aided by
visually arranging the particles of different size classes within the 1-foot section into strips
and estimating the strip length for each size class. The dominant size classes along the
transects are summed and expressed as percentages of the stream width.

Visual particle-size estimates require operator training and skill, and untrained operators
can easily introduce a bias. Trained operators can be quite proficient and accurate
(Shirazi and Seim 1981) in estimating bed-material sizes, particularly for bed material
within the gravel range (Platts et a. 1983). By contrast, Kondolf and Li (1992) found that
visual estimates as described above tend to overemphasize the frequency of fine gravel if
the deposit consists mainly of fine gravel. Similarly, visual estimates overemphasize the
frequency of coarse particlesin deposits that consist mainly of coarse gravel. Thus, visual
estimates described above seem to have their best use for reconnai ssance sampling, such
as when walking the stream to become familiar with the stream site, or for a delineation of
streambed areas with similar bed-material size (patches) that are subsequently sampled by
more stringent methods. Visual estimates are probably not the right tool for monitoring
bed-material size, asthat requires detecting small changesin particle size over time or
space.

Estimate of particle percentile size

Visual estimates are also used for delineating areas of homogeneous particle sizes
(patches or facies) when using a spatially segregated sampling scheme (Lisle and Made
1992; Lide and Hilton 1998, pers. comm.) (Section 6.3.2.1). For this purpose, particle
sizes of one (e.g., D7s) or two percentiles (e.g., Dso and Dg) are visually estimated and
facies types are differentiated based on the particle percentile size.

Estimate of percentage of three main particle-size classes with further specification of
the major size class

Buffington and Montgomery (1999a) devised a two-level visual particle-size classification
that refers to both the mean particle size and the sorting when distinguishing between
different facies. The method is statistically meaningful in that deposits with statistically
similar pebble counts were also visually identified as the same facies, whereas deposits
with statistically different pebble counts also had different visually identified facies.

Level 1 of the visual classification procedure estimates the relative abundance of the three
main constituents of a particle-size distribution. A gravel bed, for example, may be
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comprised of the three major constituents of sand, gravel, and cobbles. Their percentages
may be 10% sand, 60% gravel, 30% cobble. This composition classifiesthe facies as
sandy, cobbly Gravel, abbreviated as scG. Gravel isthe primary constituent, cobbles the
secondary, and sand the tertiary. Similarly, a bed comprising 50% Gravel, 30% cobble
and 20% bouldersis a bouldery, cobbly Gravel facies, abbreviated to bcG.

The appropriate facies terminology can also be derived by plotting the frequency of the
three magjor constituentsin atriaxial diagram, or ternary. The appropriate facies
terminology is obtained from the name of the field onto which data are plotted. Fg. 4.15
(top) isan example of atriaxia diagram for deposits that have sand, gravel, and cobbles
astheir mgjor constituents. For facies with other major constituents, the user must rename
the corner points. Copies of the spare templatein Fig. 4.15 (center), or commercially
available triaxial graph paper can be used for this purpose. Plotting is not necessarily
required for determining the appropriate terminology of a deposit, but is recommended to
aid in the grouping process. Thefieldsoutlined in Fig. 4.15 are somewhat arbitrary, and
can be changed if sediment from afacies delineated in the stream plotsin a cluster and
falls onto the border of two neighboring facies types on the triaxial diagram. The circled
group of data pointsin Fig. 4.15 (top), for example, plots on the border of agsC and asgC
facies. A more appropriate characterization for this cobble facies might be arelative
abundance of more than 50% cobbles, less than 30% gravel, and 15-30% sand.

A Level 2 classification further distinguishes the subsize of the mgjor constituent that had
been described in broad terms only in the Level 1 classification. For example, the
composition of the cobble size in a cobble facies can be specified according to the percent
frequency of very coarse (180 - 256 mm), coarse (128 - 180 mm), and medium (90 - 128
mm) cobbles. If the visual estimate determined 25% very coarse, 12% coarse, and 62%
medium sized cobbles, the cobble portion of that deposit classifies as coarse, very coarse,
medium cobbles, abbreviated as Ceycm (Fig. 4.15, bottom). Similarly, for aLevel 2
classification of relatively fine gravel, the corner points of atriaxial diagram need to be
termed very fine, fine, and medium. The unlabeled diagram can be used for this purpose.

Although not specified by the authors, the Level 2 classification could probably be
applied not only to the major constituent, but to the secondary, or tertiary constituent
instead, if those particle sizes were of most concern for the study.

Buffington and Montgomery (1999a) found that an increase in the number of fields per
triangular diagram did not significantly improve the accuracy of the visual method.
Adding the Level 2 analysisto the Level 1 analysis, however, greatly improved the ability
of the visual analysisto identify statistically similar particle-size distributions.
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Fig. 4.15: Example triangular diagram for Level 1 classification: visually estimated percent frequency of
the major three congtituents of a deposit (top); Triangular diagram for user-specified use (center); Example
triangular diagram for Level 2 classification: visually estimated percent frequency of the three major size
breaks within a size class (bottom). (Slightly modified from Buffington and Mongomery (1999a), by
permission of the American Geophysical Union).
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4.2 Volumetric sampling

Volumetric samples extract a predefined volume, or mass of sediment from the bed.
Volumetric samples are three-dimensional and may be taken from various strata of the
sediment column: the armor layer, the subarmor and subsurface sediment, and the
unstratified bulk sediment (Fig. 4.1). The surface sediment, which has two-dimensional
properties, cannot be sampled volumetrically.

4.2.1 Armor layer
4.2.1.1 Definition and description

Several mechanisms have been proposed to explain the cause of surface coarsening and
the development of an armor layer (Fig. 4.1). These include winnowing of surface fines,
selective deposition of large particles, and increased availability of coarse surface
particles as part of equal mobility transport (Section 3.3.1.2). A difference between the
particle-size distribution of surface and subsurface layer can also be caused by an
infiltration of fines into an open framework subsurface sediment (Section 3.3.1.1). Armor
layers are poorly developed in streams with high sediment supply or in well sorted
sediment.

Samples of the armor layer are used to characterize the streambed for many purposes
including streambed monitoring and sediment transport analysis. The degree of armoring
can be determined by comparing the particle-size distribution or the Dsq of the armor layer
with the D5 particle size of the subarmor sediment. The larger the ratio, the larger the
degree of armoring. A change in the degree of armoring is used as an indication of a
change in sediment supply or in flow regime.

The armor layer isthree-dimensiona and can only be sampled volumetrically. By
contrast, an areal surface sampleistwo-dimensional. It collects only surface particles
(Section 4.1.3), and cannot be used to describe the armor layer. In the presence of a
coarse armor layer, volumetric armor-layer samples and areal surface samples describe
different particle populations, and thus have different particle-size distributions. The
particle-size distributions of volumetric armor-layer samples and areal surface-samples
are even different in non-stratified deposits, and both distributions cannot be compared
without prior application of an appropriate conversion factor (Section 4.3.1 and 4.3.2).

4.2.1.2 Thickness and sampling depth of the armor layer

The thickness of the armor layer is commonly described as extending from the bed-
surface plane down to the bottom side of the largest (Dmax) Or afrequently occurring large
surface particle size (Dyom) (Fig. 4.1). A sample of the armor layer should extend over the
entire thickness of the armor layer. If the sample is not sufficiently deep, it misses the
fine particles under the coarse surface particles and produces a size distribution that is too
coarse. An armor-layer sample that extends too deeply into the bed includes subsurface
sediment which is finer than the armor layer and thus produces a sample that istoo fine.
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In order to sample the strata accurately, the thickness of the armor and subarmor layer
needs to be known. One possible way to obtain thisinformation isto dig a pilot pit and
examine the vertical extent of the respective strata. This approach isalabor and time
intensive undertaking and isimpeded by the fact that the thickness of sedimentary layers
is spatially variable, which would require multiple pits. In order to avoid this procedure
(which should not be completely dismissed), and considering the fact that the thickness of
the armor- and subarmor-layer increases with the general coarseness of the surface
sediment, several suggestions have been proposed to predict the thickness of the armor
layer. All procedures are based on some characteristic of large surface particles. Armor
thickness is approximated by:

* thec-axisof the Dy particle of the surface (Ettema 1984),
» theb-axisof the Dy particle size (Diplas 1992 a);
o 2timesthe b-axis of the Dgy surface particle size (Simons and Sentiirk 1992, p.654),
+ the embedded depth of the reach-average Dgom particle size (Winema National Forest
(1998), and

the embedded depth of the local Dnux particle size.

Thefive prediction criterialisted above result in different armor-layer depths when
applied to the same deposit. Thisisdemonstrated in Fig. 4.16. Assume adeposit from a
coarse gravel or cobble-bed stream with a Dy particle size of 200 mm, and a Dgom Of 150
mm which is about equal to the Do, particle size. All particles are ellipsoidal in shape.
The a-axis of embedded particlesisinclined by an angle of 45° and particles are
embedded with approximately 80% of their volume.

Ddom O DQO:
a=25cm
b=15cm
c= 8cm
Dmax embedded Dgom embedded
Dmax. Dmax 2- D.go depth depth Bed
cm surface
plane
O —— — o —
10 v 2 A e
20
30 v

Fig. 4.16: Differencesin armor-layer thickness determined for the same deposit using various prediction
criteria.
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The embedded depth D, is the vertical depth to which the bottom side of alarge particle
(Dmax Or Dgom) extends downward into the channel bed (Figs. 3.21aand 4.17). Itsexact
extent depends on particle position and shape. A particle in anear horizontal position
typical of disc-shaped particles does not extend deeply into the bed, and in this case,
embedded depth is equivalent to the c-axis of alarge particle and determines arelatively
thin armor-layer sampling depth. By contrast, a particle in avertical position extends
deeply into the bed, particularly if the particle has an elongated shape. In this case, the
embedded depth and the predicted armor layer thickness is equal to the particle a-axis.

Bed surface plane

Embedded
Depth De

}___

Depth of the
subarmor
layer = De

Fig. 4.17: Sampling depth of armor layer and subarmor layer adjusted to the embedded depth of alarge
particle (Dyax OF Dgom)- (Figure courtesy of Winema National Forest, Klamath Falls, OR; slightly altered).

Specific stream situations and study objectives might require case-specific criteriafor
determining the armor-layer sasmpling depth. The embedded depth of the Do particleis
only representative of the armor layer thickness, if the Dy particleisinvolved in fluvial
transport (in large but relative frequent floods). In this case, the armor layer depth may be
determined based on the Dy particle size within the sampling area.

If Dmax particles are too large to be involved in fluvial transport, the armor-layer depth
should be predicted from large particles more representative of the reach and the bedload
transporting flow regime. A possibility is the mean dominant large particle size Dgom
which is areach-averaged measure of large particle sizes and determined as the mean b-
or c-axis measured on about 30 large, but not the largest, particles. Dgom could also be
substituted by alarge particle-size percentile, e.g., the Dyo.

The criterion of 2 times the Dy particle size b-axis length also predicts arelatively thick
armor layer. Sampling the armor layer to alarge depth risks including subarmor sediment
in the armor sample. Mixing armor and subarmor sediment should be avoided when
comparing the sediment size of the two strata because contamination makes a difference
between the armor and subarmor layer less detectable. The mean b-axis size of Dgom
within the sedimentary unit of concern, or the Dgyom embedded depth, seemsto be

190



an appropriate criterion for determining the sampling depth if armor- and subarmor layers
are to be compared. Some large particles may reach farther into the bed than the
embedded depth of Dgom. These particles should be included in the armor layer sample.

If the study objective isto characterize the armor layer within a sedimentary unit (facies),
all samples within that unit should be collected to the same depth, since an equal sampling
depth allows one to combine or compare individual armor-layer samples. For a
comparison of armor-layer samples between sedimentary units, or to determine the area
weighted average armor-particle size for alarger reach, armor layers should be sampled to
the depth appropriate for each of the sedimentary units within the reach. This discussion
shows that the sampling depth for the armor layer cannot be easily expressed by a general
equation. A reasonable armor-layer sampling depth must be determined for each study
objective and should be identified in the field. Thisisbest accomplished with a pit dugin
adry bed.

Surface coarsening: ratio of pebble count Dsg to the Dsg of a volumetric subsurface or
subarmor sample

An armor-layer sample may not be required to determine the degree of armoring. The
degree of armoring may be quantified by collecting a surface pebble count and a
volumetric subsurface ssmpleinstead. Taking a surface pebble count instead of a
volumetric armor layer sample for this analysis has several advantages. A pebble count
circumvents the problems of defining and sampling the appropriate armor-layer depth.
Besides, the size distribution of the armor layer and the bed surface are directly related.
Another advantage is the spatial flexibly. A pebble count can be laid out to span afew m?
or hundreds of m”. A volumetric armor-layer sample covers asmall areaonly and
requires taking multiple samples to cover the reach. Collecting numerous volumetric
samples with a sufficiently large total sample mass and the ensuing sieve analysis makes
armor-layer sampling considerably more labor and time intensive than pebble counts. A
caveat of this substitution is that the assumed equality between the size distribution of a
pebble count and a volumetric sample may not be warranted in every situation.

4.2.2 Subsurface, subarmor, and unstratified bed material
4.2.2.1 Definition and description

Subsurface sediment is the sediment under the streambed surface, and subarmor isthe
sediment under the armor layer (Fig. 4.1). Subsurface and subarmor sediments are
usually finer than surface or armor sediments, respectively, unless the stream is aggrading
or has received a veneer of surface fines. Particle-size distributions of subsurface and
subarmor sediments are basically the same, thus the term subsurface is often applied to
both subsurface and subarmor sediments. The subsurface sediment size is controlled by
the supply of fine sediment to the stream, by alack of winnowing flows, and by local
hydraulics that favor deposition of fines.

In order to sample subsurface or subarmor sediment, the overlying surface sediment or
armor layer, respectively, first needs to be removed. This can be performed by taking an
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areal surface sample that exposes subsurface particles, or by avolumetric armor-layer
sample that exposes the subarmor layer. The overlying sediment needs to be removed
entirely in order to prevent contamination of the subsurface or subarmor sediments by
surface or armor sediments. Thus, Church et al. (1987) suggest removal of the armor
layer to the bottom side of the largest particle in the sample area. Thorough removal of
the armor layer (Section 4.2.1.2) is an easier technique than removing all surface particles
by taking an areal sample (4.1.3.1 and 4.1.3.2).

Subsurface or subarmor sediments should be sampled to at |east the same thickness as the
armor-layer thickness, and possibly to a somewhat larger thickness to compensate for the
usually conic shape of the excavation hole. This suggestion implies that there is no lower
border to the subsurface or subarmor sediment limiting the thickness. Subsurface
sediment can be limited in its thickness in recently aggraded stream |locations where a thin
layer of sediment was deposited on top of aformer surface with a different particle-size
distribution.

Unstratified bed-material samples

Unstratified volumetric samples of the bed material include both armor and subarmor, or
surface and subsurface sediments, respectively. Unstratified bed-material samples are
useful only when the bed material is either non-stratified, i.e., non-armored and no veneer
of surface fines, or when stratification is negligible or of no concern for the study resullt.

4.2.2.2 Sampling depth to avoid bias against large particles

The sampling depth of unstratified deposits does not usually have alower boundary. This
offers the opportunity to take a sample sufficiently deep to avoid bias against large
particle sizes. The three criteria presented below can be used to compute sample depth

Cobble surfaces. 2 Dmax

For coarse beds with a Dy in the cobble range, Diplas and Fripp (1992) and Simons and
Senturk (1992) suggest that volumetric sampling of unstratified sediment should extend to
aminimum depth (dgmin) Of 2 Diax, €.9., t0 36 cm for a Dyx Of 180 mm (Fig. 4.18).

Using 0.5 gsieve classes, the value of 2 Dy (i.€., the size class of the Dy, particle) is
equal to or dightly smaller than the common multiple of the largest two sieve sizes, which
are also the common multiple of all other smaller sieve sizes (Fig. 4.19). For example, the
sampling depth of 2 Dyux = 16 mm computed for a D particle size of 8 mmequals2 - 8
mm, andiscloseto3- 5.67 mm. Similarly, 16 equals4 - 4 mmwhichiscloseto5- 3.36
mm,6- 28mm,and7 - 2.38 mm. Thus, if an idealized deposit with a
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Fig. 4.19: ldealized sediment deposit showing the minimum sampling depth for volumetric samples.
(Redrawn from Diplas and Fripp (1992), by permission of the American Society of Civil Engineers).

systematic packing of spheresisassumed (Fig. 4.19), a sampling depth of 2 Dy Would
representatively include large particles. However, a sampling depth of 2 Dy may not
guarantee that large particles in natural deposits are representatively included in the
sample. A bias against large particles appears as particle shapes become more elongated,
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and as particle orientation approaches the verticadl, i.e., a-axes are at aright angle to the
bed surface.

Lowest common multiple of the largest two sieve sizes

To avoid the bias against large particles in volumetric bulk samples, Diplas and Fripp
(1991, 1992) proposed computing the minimum sampling depth as the lowest common
multiple of the integer value of the largest two size classes. For example, the two sieve
sizes of 4.8 and 6.7 mm (= -2.25 and ¢=-2.75) are rounded down to 4 and 6 mm. Their
lowest common multipleiscomputedfrom4=2- 2,and6=2- 3,andresultsin2- 2. 3=
12 mm. For the two size classes 5.67 and 4 mm, the lowest common multiple is 20, and
88 for the two size classes of 11.3 and 8 mm. The lowest common multiples increase
steeply with increasing Dyax particle size, but the data points scatter. The best fit power
regression function fitted to the values expresses the relationship between minimum
sampling depth dgmin and Dy @S

dsmin = 0.48 Dpmax 210 (4.9

with dgmin in cm and Dpax in mm (Fig. 4.18). EqQ. 4.4 is not designed for use in coarse
gravel and cobble beds. The ratio between the computed dsyin and Dpex iNCreases strongly
with increasing Doy particle size. For fine gravel with a Dy Of 4 mm, Eq. 4.4 computes
adgmin of 8mm (i.e., 2 Dinax). For a Dk of 64 mm EQ. 4.4 computes a dgmin of about 3 m,
a sampling depth that is 47 times larger than the Dypay.

Variable multiples of Dyax

Sampling depths computed with Eg. 4.4 become disproportionately and unmanageably
large for medium and large gravel, whereas the sampling depth for fine gravel is
manageably small. In order to increase sampling depth for small particles, but maintain a
feasible sampling depth for large particles, the authors suggest computing sampling
depths as variable multiples of Dax. The depth can be set to exceed Dux by afactor of 2
for cobbles, such asin Eq. 4.3., but be allowed to increase for finer beds. For example,
factors of 2, 3, 4, and 5 might be assigned to particle sizes of 256, 64, 16 and 4 mm. A
power regression function expresses this criterion for sample depth as

Agrin = 0.71 Dy 278 (4.5)

with dgyin in cm, and Dy in mm (Fig. 4.18).
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4.2.3 Procedures and sampling dimensions for dry beds

Sampling bed material in dry beds has the advantage that no special sampling equipment
isneeded. Also, problems arising from sampling under water do not need to be
considered (e.g., poor visua control, sslumping wallsin the sampling pit, potential for
losing fines, working with your hands in cold water). Thus, bed materia should generally
be sampled during lowest flows when much of the bed is exposed.

However, the relative ease of volumetric bed-material sampling under dry conditions
should not be abused by selecting only dry locations when sampling in partially inundated
streambeds. Dry streambed areas are most likely bars, and particle sizes on bars, both
surface and the subsurface, tend to be finer than bed material in other parts of the
streambed. Thus, unless the study objective focuses on the investigation of bars,
representative sampling for characterizing areach requires sampling all areas of the reach,
wet and dry (see sampling schemes, Sections 6.4 and 6.5).

4.2.3.1 Tools for shoveled samples

A sturdy shovel often suffices as atool for sampling bed material on dry beds. A pick, or
apry bar can be useful to pry lose cobbles and boulders. A trowel is handy for separating
armor and subarmor sediment and for working in finer gravel. A metal bowl is
convenient for scooping sediment out of a narrow pit.

The sampling area should to be outlined by aframe, preferably one that is round and
adjustable, e.g., lawn edging. The walls of the pit should remain as straight as possible
because a conic-shaped hole has different proportions of sediment from the top and the
bottom of the pit. The advantage of shoveled samplesisthat they do not limit the sample
Size, as freeze-cores or pipe samplers do (Sections 4.2.4.8 and 4.2.4.5). In addition, a
shovel isrelatively inexpensive and easy to use and to transport.

If samples from dry and inundated locations are to be compared, the same technique
should be used for both locations to prevent a methodol ogical bias between samples.
Sampling procedures and equipment used for volumetric sampling under water (Section
4.2.4) are generally usable for dry conditions as well.

4.2.3.2 Sample dimensions for shoveled samples in unstratified bed material

Volumetric samples must have a predefined sample volume. This volume is determined
from sample-mass criteria. Some of the sample mass criteria are empirically based and
compute sample mass as a function of the D particle size (Section 5.4.1), whereas
others are analytically based and determine sample mass on the basis of a preset precision
for a sediment deposit of a given coarseness and sediment sorting (Sections 5.4.2 and
5.4.3). Sampling dry beds has the advantage that the dimensions of the sampling pit can
be made sufficiently large to match the appropriate sample volume and sample depth, i.e.,
sampling equipment does not pose a limitation on sample size.
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Minimum sample mass and volume

Sections 5.4.1 and 5.4.2 discus a variety of sample-mass equations from which the user
can choose. The discussion below uses a simple function that determines sample mass for
particles with a Dpax > 32 mm by

M= (2.87 - Dy - 44.8) (4.6)

where sample mass misin kg and Dy in mm. Eq. 4.6 is plotted in Fig. 4.20 and derived
from the three sample mass criteria proposed by Church et a. (1987) for bed material of
different Doy particle sizes (Section 5.4.1.1). Sample volume is obtained by multiplying

10000 smpleweigt 0%, T
T criteria after e Y L 2
T Churchetal. (1987) <~ o s 2%

T s A

1000 —+

100 =

10 -

Minimum sample weight (kg)

8 113 16 226 32 45 64 90 128 180 256 360
Dimax (mm)

Fig. 4.20: Minimum sample weight for sediment with different Dy SizeS (Dyax = 0.1% mfor a Dy <32
MM, Doy = 1% mfor a Dpgy <128 mm, and Dy = 5% mfor Dy > 128 mm) (after Church et al. 1987).
The thick line represents a linear regression function fitted through the “corner points’ of the stair-case
function derived from the three sample-mass criteria by Church et al. (1987).

sample mass and sediment bulk density. Bulk density for shoveled gravelly sediment is
approximately 1.500 kg/m®, whilein situ bulk density may range between 1.700 and
2.600 kg/m?® (Section 2.4).
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Minimum sample dimensions

Once minimum sample mass and volume, as well as an appropriate sampling depth
(Section 4.2.2.2) are determined, the quotient of volume to depth provides an estimate of
the areal extent of the sample. This area can be alotted to a circle which should have a
diameter at least as large as the sampling depth to ensure representative sampling of large
particles.

The example below can be used to visualize the size of the pit required for sampling in
medium and coarse gravel beds.

Example 4.1:
Sample mass for adeposit with a Doy 0f 45 mm is about 84 kg

(Eq. 4.6). Tightly packed, this massis about 42,000 cm® or 4.2
household pailsin volume if abulk density of about 2 g/lem® is
assumed. Sampling depth for a deposit with a Dk of 45 mmis9
cm (Eq. 4.3, 2 D), Or 14 cm (Eq. 4.5, variable multiples of
Dnex). EQ. 4.4 (common multiple method) is not applicable to
particles larger than 22 mm because it computes unreasonably
large sampling depths (Fig. 4.18). A sampling depth of 9 cm (2
Drax) requires around pit with adiameter of 77 cm. For a
sampling depth of 14 cm, the pit has to be 60 cm in diameter.

In a coarse gravel-bed river with a Dy particle size of 180 mm,
sampling depth is 36 cm (Eq. 4.3), or 40 cm (Eqg. 4.5). Taking the
average of 38 cm, the sample volume of 236,000 cm?® (about 24
household pails) requires a pit of 89 cm in diameter. The user
might consider allocating the required sample volume to several
smaller pits excavated at several sampling sites (Wolcott and
Church 1991; Rood and Church 1994 (Section 6.4.4).

A calculation analogous to the one above can be used to compute the areal extent for
volumetric armor-layer samples.

4.2.3.3 Surface pebble count on subsurface sediment

Based on the equivalence of particle-size distributions determined from volume-by-weight
and grid-by-number samples proposed by Kellerhals and Bray (1971) on non-stratified
deposits (see Section 4.3.1), Buffington (1996) developed a technique that uses pebble
counts to sampl e the subsurface sediment. Thefirst step of the procedure is to remove
surface particles by hand from an area of about 1 m?in order to expose the subsurface
sediment. Sand and fine gravel particles which often accumulate just below the surface
are usually not completely removed by manual picking of surface particles (Section
4.1.3.1) and would produce a sample that is biased towards fines. In order to prevent this
potential bias, these fines are mixed into the subsurface sediment prior to sampling. The
depth of mixing should be slightly deeper than the sampling depth that would be required
for avolumetric sample, which depends on the D, particle size and
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the number of samplestaken. Mixing to the depth of one shovel blade lengthisa
practical criterion. The necessity for mixing becomes apparent by Buffington’s test
analyses: without mixing, only 2 out of 5 of the subsurface pebble counts corresponded
(a = 0.05) to avolume-by-weight analysis of samples of the same sediment. The mixing
procedure produced a statistical correspondence between subsurface pebble counts and
volume-by-weight analysesin 4 of 5 samples.

Buffington (1996) suggested that particlesincluded in the pebble count should be selected
at random by pointing at a particle with a pencil tip, eyes averted. Bias against fines or
large particlesis probably not much of a concern under these circumstances (Sections
4.1.1.2-4.1.1.6). However, an operator kneeling or crouching besides the pit may
involuntarily favor the center or some other easily reached part of the sampling area, thus
introducing a spatial bias. A sampling frame that covers the 1 m? surface with a small-
scale grid of 10 by 10 cm or smaller (Section 4.1.1.6) can be used in the absence of
cobbles and ensures that particles are sampled systematically from the entire sample area.

Anocther concern regarding this method is that an area of 1 m? might not provide ample
gpace to collect a sufficient number of particlesin coarse bed material without counting
some particles twice. Counting 400 particlesis required to determine the particle sizes of
the Dsp and Dgs to within about 0.1 - 0.15 ¢-units, and the Ds to within about 0.3 @-units
(Rice and Church 1996b, Section 5.2.2.3) in adeposit with a standard deviation of 1.17 ¢.
If the spacing between grid points equals the D particle size, and the Doy particle size
is 180 mm, the sampling area needs to be 13 m? (400 Dy ) Which may be met with a
square 3.6 by 3.6 minsize. A sampling areaof 1 m? can accommodate a 100 particle
count if the Dnux particle size is 100 mm, or a400 particle count if the Dy particle sizeis
50 mm. Thus, several pits may have to be sampled in order to obtain enough sampling
points for a representative pebble count on subsurface sediment that contains cobbles.

4.2.4 Procedures and equipment for submerged conditions

Although dry gravel bars are convenient for volumetric sampling, samples need to be
taken from all parts of the streambed for a reach-averaged analysis of sediment size, or
from riffles for tasks such as an analysis of fish spawning habitats, or the ratio of surface
to subsurface particle size. Thus, armor, subsurface, and unstratified volumetric samples
frequently have to be obtained under water. Several procedures and equipment for taking
volumetric samples under water are described below. These include:

» shovels, scoops and clams,

* pipeand McNeil samplers,

* barrel samplers,

» freeze-core samplers and resin cores, and
» hybrid pipe freeze-core samplers.

An extensive comparison of various sampling procedures for unstratified bed materia is

summarized by Ramos (1996). Hisliterature review compares equipment needed, the
sampling procedure, advantages and disadvantages, as well as a description of the
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accuracy and precision expected from five sampling devices: single probe, and multiprobe
freeze-cores, McNeil samplers, shovels, and the hybrid pipe-freeze-core sampler. Not all
samplers are equally well suited for a specified study objective. The user needsto select a
sampling procedure appropriate for the particular bed-material characteristics, sample-size
requirements, and the remoteness of the site.

In addition to taking samples under submerged conditions, volumetric bed-material
sampling in mountain gravel-bed rivers has to overcome several other problems:

* Armoring isusually well developed, in which case many study objectives require
stratification of the bed material into surface and subsurface or armor and subarmor,

» Stream-bed particle sizes that range from silt and boulders are difficult to sample with
one method,

» Large sample sizes of 100 kg and more are required for representative particle-size
anaysis, and

» Fast flow velocities that wash away fines dislodged when the bed is disturbed by the
sampling process.

Most procedures for underwater volumetric sampling employ sampling devices that have
fixed sample volumes. The volume of one sample may be much smaller than what is
required for the total sample mass. Because of this, several subsamples may need to be
combined to obtain the required total sample mass (Sections 6.4.4; Wolcott and Church
1991; Rood and Church 1994).

4.2.4.1 Shovels

When sampling subsurface sediment under water, the operator needs to ensure that fine
sediment remains in the sample and is not swept away by the flow. A shovel sample
taken from the riverbed under water loses these fines and causes an unrepresentative
samplethat is biased against fines. The loss of fines increases with the increasing velocity
of flow. Billi and Paris (1992) and Billi (1994) caution against using shovelsin
submerged conditions, unless the water is still, and an underwater storage box with a
mesh-bag cover is available for depositing the sampled sediment.

Comparison of shovel methods with the McNeil sampler

Schuett-Hames et al. (1996) compared the results of three methods of collecting shoveled
samples with results obtained with the McNeil sampler (Section 4.2.4.5), asampler that is
commonly used on beds of fine and medium gravel. The three shovel methods used were
a standard shovel, a standard shovel used within a stilling well that shields the sampling
site from moving flow, and a special shovel with elevated sides to minimize the loss of
fine sediment over the sides of the shovel. Paired samples were taken with the McNeil
sampler and one of the shovel methods at several riffles on two streams with relatively
fine gravel beds. Sampling protocols were followed carefully, and the data were analyzed
by severa statistical tests.
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At one of the streams, samples taken with a standard shovel within a stilling well and with
aMcNeil sampler produced similar geometric mean particle sizes and a similar percent
fines (particles less than 0.85 mm). The other two shovel methods had 2.9 - 4.7 % less
fines than the McNeil sampler, and geometric mean particle sizes were on average 20%
larger. This suggests that a standard shovel used within a stilling well can be a suitable
aternative to the McNeil sampler. Shovelsand a stilling well are convenient to use in the
field and have the advantage of providing a larger sample mass than the McNeil sampler.

All of the shovel methods produced a similar percent of coarse sand (0.85 - 2 mm) asdid
the McNell sampler. But only the McNeil sampler collected sediment less than 0.1 mm
(fine sand and silt) representatively. Material of this sizeis transported in suspension
when the bed is disturbed during sampling. Regression functions between methods had
low coefficients of determination and could not be used to predict the observed
discrepanciesin the percent of sediment finer than 0.85 mm or in the geometric mean
particle sizes.

In the other stream, all shovel methods produced geometric means that were coarser by 9 -
18 % than the geometric means produced by the McNeil sampler, and had adlightly
higher percentage of fines. Water depth and flow velocity in the two streams could not
explain the difference in the results between the two streams. However, pooled data from
both streams indicated a significant relation between the percentage of sediment larger
than 3.35 mm and the difference in the percent fines between any shovel method and the
McNeil sasmpler. Shovel methods produced less percent fines than the McNeil sampler in
streambeds with more than 70% coarse sediment, and more percent fines than the McNeil
sampler in streambeds with less than 70% coarse sediment.

Differences in the percent fines between the McNeil sampler and various shovel sampling
methods appear to be the product of streambed characteristics, and further analysis of this
dependency is necessary. However, sampling methods should be consistent within a
study, particularly if results are to be compared over time or among locations.

4.2.4.2 Mesh-bag scoop

A mesh-bag scoop is a useful tool for sampling armor and subarmor sediment in
streambeds consisting mostly of sand and fine gravel (Forest Service, Klamath Falls, OR,
pers. communication). A mesh-bag scoop has a metal frame that is of the same
dimensions as the back side of a3 by 3 inch Helley-Smith bedload sampler (20.3 by 12.1
cm). Theframeis constructed of V-profiles, so that a standard Helley-Smith sampling
bag (0.25 mm mesh width) can be slipped into the notch of the profile. A handleis
attached to the top of the metal frame (Fig. 4.21).

The mesh-bag scoop may be used in conjunction with a stilling well or a plywood shield
that encloses three sides of a sampling area 0.6 by 0.6 min size (Section 4.2.4.7). The
mesh-bag scoop is especially useful when sampling armor layer and subarmor sediments
in fine-grained beds. After the armor layer depth is determined, the mesh-bag scoop is
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pulled through the bed material along the lower border of the armor layer, scraping the
armor layer sediment into the mesh bag. With the free hand, the operator ensures that
dislodged armor layer particles are not pushed to the side, but enter the sampler.

55

*Iffff*i??? T

A ARSI oleletele!

ettt sttt ettt
et a Tt e Tt Ta e et Te e e

e

Fig. 4.21: Mesh-bag scoop with attached Helley-Smith sampling bag for sampling armor layer and

subarmor sediment in fine and medium gravel-bed streams.

Sampling patterns follow parallel paths to ensure that the sampling areais sampled
entirely, and that no places are sampled twice. The sampled sediment in the mesh bagis

frequently emptied into abucket. After all the armor layer

sediment is removed, the

mesh-bag scoop can be used to collect the subsurface sample. This sampling method
works well in streambeds with predominantly fine gravel and produces about 1 - 2
household pails of armor layer sediment. However, this method has not yet been

validated by peer review.

4.2.4.3 Grab samples (US RBMH-80)

A grab sampler collects as much sediment as can be held in the jaws of the sampling
device. Finesareretained if the jaws close properly. Grab samplers have been devel oped
for sand-bedded streams, but can be used in beds of fine gravel as well, provided no
gravel particles become wedged in the jaws and inhibit the closing mechanism. The

newest grab sampler developed by the Federal Interagency
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Sedimentation Project” is the hand held rotary scoop sampler US RBMH-80 (Fig. 4.22).
An older version of this sampler is described in Edwards and Glysson (1988). A
cylindrical bucket 20 cm wide houses the rotary scoop. The bucket is mounted at the end
of arod. Thetotal length of the sampler 1.42 m.

The sampler can be operated under water in wadable streams. To obtain a sample, the
opened sampler is placed onto the streambed and firmly held down. A wire mechanism,
operated by alever, opens and closes the rotary scoop. The sampler can collect
approximately 175 cm?® of unstratified bed material, from a maximum depth of 4.5 cm.
After the sampleis collected, the sampler islifted from the bed, and the sample is emptied
into a bucket.

Fig. 4.22: Schematic diagram of US RBMH-80 hand-held, rotary-scoop bed material sampler developed by
the Federal Interagency Sedimentation Project. a) Rotary scoop open; b) Rotary scoop closed.

% The US RBMH-80 sample can be viewed and ordered from the Federal Interagency Sedimentation Project web site
http: //fisp.wes.army.mil/.

202



The advantage of the rotary-scoop sampler is that alarge number of samples can easily be
taken over the entire sampling area, which may be afacies patch or arelatively
homogeneous reach of the stream. Samples can then be commingled for a composite
analysis (Sections 6.4.4; Wolcott and Church 1991; Rood and Church 1994). The
disadvantage is that the sampler is not suitable for large gravel, and that the sampler may
not close properly and will lose its fines if a pebble becomes lodged in the mechanism.

4.2.4.4 Backhoe

In wide aluvia gravel-bed rivers where bed material is mobilized during one or severa
flood events annually and tread damage is of little concern, a backhoe can be an efficient
tool for sampling large amounts of unstratified sediment. However, in small and often
incised mountain gravel-bed streams, backhoes may damage riparian areas and should be
used with great care. Also, when digging into an inundated streambed with a backhoe,
fines are likely to be washed away and will be underrepresented in the sample. However,
backhoes and boom trucks parked on a bridge with the shovel (bucket) lowered to the
stream can be helpful for lifting equipment and heavy sediment samples collected by other
means from the streambed.

4.2.4.5 Pipe samplers and the McNeil sampler

Pipe samplers and the McNeil sampler (McNeil and Ahnell 1964) were developed for fish
habitat studies primarily concerned with the amount of fine sediment in spawning gravels.
Pipe and McNeil samplers have also been used to monitor the amount of fines for
cumulative watershed effects analyses. Depending on the fish species of concern, or the
size of fine sediment supplied to the stream from watershed disturbances, the term “fines’
can refer to any particle size between fine sand (< 0.1 mm) to pea-sized gravel (< 8 mm).
Therefore, the term fines needs to be specified in a given study.

Pipe and McNeil samplers consist of a stainless steel pipe 0.1 — 0.2 m in diameter that
extends through the bottom of a cylinder with adiameter 2 - 3 times larger than that of the
inner pipe (Fig. 4.23 a-c). Designs of pipe and McNeil samplersvary in the diameters of
the inner and the outer pipe, and in the angle at which the outer pipe attaches to the inner
pipe. These differences should not affect sampling performance. However, when bed-
material particle sizes approach the dimensions of the sampler opening i.e., the inner pipe,
the physical size of the sampler may artificially truncate the sasmpled particle-size
distribution. Thus, the sampler opening should be large enough to easily accommodate
the largest particles to be sampled. An opening size of 2 Dy IS SUggested.

Pipe and McNell samplers are designed for wadable flows with depths of less than 0.5 m
and relatively slow flow velocities. The end of the small pipeisworked into the
submerged river bed, usually to a depth of about 15 cm. The sediment inside the pipeis
excavated by hand and temporarily stored in the built-in storage basin. The water inside
the large pipe may contain fine sediment brought into suspension during sampling. This
fine sediment may be sampled by swirling the water within the sampler and taking a
suspended sediment sample for lab analysis (Fig. 4.23 aand b). To retain nearly all of
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the fine-grained bed-materia for anaysis, the inside opening of the small pipeis capped
before the sampler is removed from the streambed (Fig. 4.23 ¢). The quantity of
suspended sediment can be determined directly in the field using an Imhoff cone. Failure
to sample or retain the fines may significantly underestimate their presence in the
substrate.

Separating surface or armor sediment from subsurface or subarmor sediment may be
somewhat difficult when using pipe or McNeil samplers with small sampler openings.
Thisis particularly true if the sampler is used underwater and the differentiation between
strata has to be accomplished by feel alone. Therefore, pipe and McNeil samplers are
usually used to collect an unstratified volumetric sample. The percent finesis then
determined for the unstratified sample. Note that the percent finesin an unstratified
sample is smaller than the percent fines in a subsurface sample. Thisis because the
unstratified sample contains more large particles (i.e., those from the surface) than the
subsurface sediment. The difference between the percent fines of the unstratified
sediment and the subsurface sediment may be largely eliminated if the sample is truncated
at acommonly occurring large particle size before the percent fines is computed.

Sample mass collected by McNeil samplers varies with sampler dimensions, but
commonly ranges between 6 and 15 kg (Rood and Church 1994). Such sample sizes are
small when the stream contains large gravel, and require taking several samplesif a
particle-size analysisis to be obtained for particles larger than 35 to 48 mm according to
the 1% criterion by Church et al. (1987) (Section 5.4.1.1). A 0.2-m diameter McNeil
sampler can be used for determining the percent finesif cobbles (coarser than 64 mm) are
discarded. Discarding particles larger than some preset size is also suggested by Rice
(1995) as a means to decrease the effect of large particles on the computed percent fines.
Truncation improves the comparability of the percent fines between samples provided the
selected truncation sizeis equal for all samplesincluded in the comparison.

Pipe and McNeil samplers can be fabricated in various dimensions to best suit a particular
stream-bed situation. Pipe samplers are relatively quick and easy to use, and are light
enough to be transported to remote areas. However, Rood and Church (1994) caution that
it takes considerable operator skill to representatively sample the fine sediment collected
by the McNeil sampler. Evaluations of how representative results from McNeil samplers
are with respect to fine sediment vary among studies. NCA S| (1986) found that the
McNeil sampler minimizes the loss of fines, but Rood and Church (1994) caution that the
sampler underrepresents the fine sediment in the sample. Further information on
sampling results of pipe and McNeil samplers are summarized by Ramos (1996) who
compared samples of the McNeil sampler with freeze-core and other samplers. Schuett-
Hames et al. (1996) compared samples from the McNell sampler to samples obtained by
various shovels (Section 4.2.4.1).
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Fig. 4.23 a- c: Pipe and McNeil samplers: (a) Pipe sampler. Adapted from Y uzyk (1986); (b) McNeil
sampler. Adapted from Hamilton and Bergersen (1984), source: Shepard and Graham (1983); (c) McNell
sampler. Adapted from Hogan et al. (1993), source: McNeil and Ahnell (1964).
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4.2.4.6 Barrel samplers

Barrel samplers were developed specifically to accommodate the tasks and problems of
collecting volumetric bed-material samplesin gravel-bed rivers. Because of their large
size, barrel samplers allow sampling over awide range of particle sizes, and relatively
large sample volumes. Barrel samplers retain suspended fines that can be sampled
separately, and can be used under submerged conditions. Two different barrel samplers
are described below.

Cookie-cutter sampler

The “cookie-cutter” or gravel-cutter sasmpler was developed by Klingeman and Emmett
(1982) for use in coarse gravel- and cobble bed streams. The cookie-cutter sampler has an
opening large enough to sample cobbles and small boulders, and facilitates large sample
sizes that can better represent the percentage of gravel and cobbles than samples from the
smaller pipe and McNeil samplers. The cookie-cutter sampler consists of an open 55-
galon drum that is cut in half. The resulting cylinder isabout 0.4 m highand 0.5min
diameter (Fig. 4.24). Two operators are required to use this device. The barrel isfitted
with handles. Teeth are cut into the bottom of the barrel so that it can be worked afew cm
into the streambed. When the sampler is used in shallow water that does not overtop the
barrel, armor- and later subarmor-layer sediment is scooped out of the barrel and poured
into buckets. Under submerged conditions, the sampled sediment is temporarily stored in
arectangular sample box that attaches to the barrel and is held by one of the operators.
The sample box is 0.7 m long by 0.3 m high by 0.4 m wide. One end of the sample box is
open, the other end has a fine mesh wire of 0.2 mm to retain

Sample box

Gravel cutter

Fig. 4.24: Cookie-cutter sampler developed by Klingeman and Emmett (1982). (Reprinted from Y uzyk
(1986)).

206



fines. The sample box is placed on the downstream side of the sampler so that the current
that flows through the sample box carries the fines into the box. After sampling, the
sample box islifted out of the water and emptied. The gravel-cutter sampler can be used
in deep, unwadable water if divers and a support boat are used.

CSU barrel sampler

The CSU-barrel sampler developed by Hogan et al. (1993) and Milhous et al. (1995) isa
simplified alternative to the cookie-cutter sampler. To prevent the loss of suspended
fines, the CSU-barrel sampler uses ataller barrel than the cookie-cutter sasmpler. The
CSU sampler is 0.6 cm high and 0.46 m in diameter, made from a 30-gallon drum that is
cut open on both ends (Fig. 4.25).

—

Fig. 4.25;: CSU barrel sampler.

At the selected sampling location, the barrel is dlightly inserted into the bed material. For
a subsurface sample, surface particles must be removed first. For this task, the operator
has to rely mainly on feeling the particles, because visibility on the barrel bottom is poor
primarily due to suspended fines. Distinguishing between surface and subsurface
particles by feel isdifficult in cold water when neoprene gloves are needed. Working
systematically from one side to the other helps ensure that no large surface particles are
overlooked. However, small surface particles cannot be removed representatively. Also,
it is not possible to distinguish between surface and armor layer when using the barrel
sampler in coarse gravel beds. Particlesthat are under the edge of the barrel are always
removed, but only included in the sample if more than half of the particle volume
protrudes into the barrel. Removing surface particles from under the edge of the barrel
allows the barrel to be moved deeper into the bed.
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After the surface particles have been removed, the subsurface is sampled by collecting all
particles within the barrel until the pit has reached a predefined depth. Particles are
picked by hand, or scooped with small trowels and bowls, and put into large buckets (Fig.
4.26) that are held by an assistant who also hauls filled buckets back to the bank. Anold
screwdriver may be needed to pry loose large particles that are wedged in the bed.

Suspended particles (fine sand and silt) can be sampled by swirling the water around in
the barrel and then taking a suspended sediment sample. To retain fines even under
completely submerged conditions in chest deep water, a cloth hood can be secured over
the top of the barrel. The operator wears a diving mask and a snorkel and reaches the
sediment in the bottom of the barrel through a dlit in the cloth.

Compared to freeze-core samplers, barrel samplers provide alow-tech method for
sampling unstratified subsurface sediment under submerged conditions in gravel-bed
rivers. Barrel samplers are inexpensive and relatively easy to use. The comparatively
large dimension of barrel samplers provides a sample mass of about 60 - 70 kg per barrel,
and makes barrel samplers suitable for cobble beds. The disadvantage of the barrel
sampler isthat it isdifficult to carry over long distances and therefore not suitable for use
at remote sites. Tall barrel samplers are also difficult to use by small persons, particularly
in deep flow.

Fig. 4.26: Taking abarrel sample, South Fork Cache la Poudre Creek, Colorado. (Photograph by K. Bunte).
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4.2.4.7 Three-sided plywood shield

Armor and subarmor layer in submerged conditions can be sampled more effectively and
more comfortably for the operator if the sample areais enclosed by a three-sided plywood
shield. The operator collects the sample from the open downstream side. The enclosure
consists of three plywood sheets, each 0.6 by 0.9 m or 0.9 by 0.9 min size, that are joined
on their long sides by piano hinges. The plywood shield has a tarpaulin skirt along the
outside. The tarpaulin is fastened near the bottom of the plywood sheets and extends
about 0.5 m beyond the plywood (Fig. 4.27). This sampling device was developed by the
Winema National Forest, Klamath Falls, OR.
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Fig. 4.27. Plywood shield to provide a three-sided enclosure of the sampling area.

Set-up of the plywood shield requires two persons. The plywood shield is unfolded and
set at the appropriate location on the streambed, the open side facing downstream. The
bottom side of the plywood is shoved dightly into the bed. The skirt is spread along the
outside of the shield and rocks are placed along the edge of the skirt to hold it down. The
set-up should be performed quickly to minimize the water flow through openings below
the plywood enclosure or through the hinge area as it may scour fines from the bed. Any
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leaks should be minimized by squeezing rocks, rags, and plastic shopping bags into
openings until the water inside the plywood shield isrelatively stagnant.

The operator wears chest waders and while kneeling or crouching at the open side,
removes the armor layer to a predetermined depth. In coarse gravel- and cobble-bed
streams, the operator collects the armor-layer material using atrowel and a medium-sized
metal bowl! (approximately 1 liter capacity), and perhaps a pry bar to pry lose particles
that are wedged into the bed. A mesh-bag scoop (Section 4.2.4.2) is a suitable tool for
collecting armor-layer sediment in fine and medium gravel beds. The nearly stagnant
water within the shielded sampling area minimizes the amount of fines swept out of the
sampling area. All collected sediment is saved in buckets. After the armor layer is
removed, the subarmor layer is sampled to a predetermined depth.

Working with the plywood enclosure has two advantages: it improves the access for the
operator while sampling and provides alarger sampling area (0.36 — 0.81 m?) than a barrel
(0.14—-0.20 m?). An armor-layer samplein acoarse gravel or cobble-bed stream may
yield 70 — 130 kg depending on the sampling depth. If the subarmor sample is sampled to
the same thickness as the armor-layer sample, the sample massis smaller due to the conic
shape of the excavation and may yield 40 — 80 kg. Thus, if the study objective is solely
the subarmor sediment, a thin armor layer should be removed in order to increase the
amount of subarmor sediment that can be sampled. Even though sample mass of an
individual sample from within the plywood shield is larger than that obtained with any
other sampling method, several samples are needed to obtain atotal sample massthat is
sufficient for a statistically meaningful particle-size analysis (Section 5.4).

4.2.4.8 Freeze-cores

Freeze-core samplers collect all particles that are frozen to one or several hollow rods
pounded into the streambed. The sample extends from the surface into the subsurface and
leaves the stratification intact.

Freeze-core sampling was devel oped for aquatic habitat studies for which the distinction
between surface and subsurface sediment size and the percentage of fine sediment is
important. The advantage of freeze-core samplesis that the bed-material stratification is
visible in the sample. Also, freeze-cores can be collected in flows deeper and faster than
those appropriate for McNeil and pipe samplers. Freeze-core sampling is discussed by
Walcotten (1973, 1976), Adams and Beschta (1980), Everest et al. (1980), Lotspeich and
Reid (1980), Carling and Reader (1981, 1982), Platts et a. (1983), Thomas and Rand
(1991), Young et a. (1991), Thoms (1992), Hogan et al. (1993), Rood and Church (1994),
and Milhous et a. (1995).

A single-tube freeze-core sampler consists of a pointed hollow rod with a2 cm inside
diameter. Therod isdriven approximately 0.2 m into the streambed. A cooling agent,
such as liquid nitrogen or liquid carbon dioxide, is injected into the rod and escapes
through a series of nozzles at the lower end so that the pore water in the sediment adjacent
to therod freezes (Fig. 4.28). The size of the frozen core depends on the amount
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of cooling agent used, the temperature of the streambed, the velocity of the stream flow,
the pore water movement, and the pore space. The frozen core is then dug out or
extracted by a hoist and thawed for particle analysis. Typically, freeze-coresare 0.1 —
0.15 min diameter and weigh about 1 - 5kg. Sample mass can be increased to 10 - 15 kg
if liquid nitrogen is used as the cooling agent (Rood and Church 1994). The sediment
stratigraphy remains intact when the frozen core isretrieved, and, if the core is thawed
over adlotted box (Fig. 4.29 b), the stratigraphy can be analyzed incrementally. Problems
with freeze-core sampling stem from the difficulty of pounding arod into a streambed,
disruption of the bed stratification due to pounding, the extensive amount of equipment,
and the cost (several thousand dollars).
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Fig. 4.28: Freeze-core samplers. Single-tube freeze-core sampler with afire extinguisher as the source for
liquid CO,. (Reprinted from NCASI (1986), source Walcotten (1976), by permission of the National
Council of the Paper Industry for Air and Stream Improvements).
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In order to enlarge the freeze-core, and include larger particlesin the sample, Lotspeich
and Reid (1980), and Everest et a. (1980) developed the tri-tube freeze sampler. Three
rods are arranged in atriangular fashion and driven into the streambed through templates
at the upper end of tubes to ensure that the distance of the tubes relative to each other
remains constant between 3.8 and 7.6 cm (Fig. 4.29 @). A tripod and winch are used to
extract the core.

Sample mass for tri-tube samplesis 10 - 20 kg (about 0.5 - 1 bucket full), which is
approximately 2 - 4 times more than the mass of single-rod freeze-cores. A sample mass
of 10 kg satisfies the 0.1% sample mass criterion by Church et a. (1987) for a Dyux
smaller than 20 mm (i.e., the Dy particle comprises 0.1% of the total sample weight,
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Fig. 4.29 aand b: (a) Tri-tube freeze-core sampler with templates to keep an even distance between the
tubes (Reprinted from Platts et al. (1983); (b) A dotted sheet metal box for subsampling and analysis of the
sediment stratigraphy (Reprinted from Platts et al. (1983)).
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Section 5.4.1.1), or if the 1% criterion is applied, for particles smaller than 40 mm.
Repeated samples have to be taken to analyze the size distribution of larger particles,
unless the study aim justifies a truncation of the particle-size distribution, asis often
necessary when determining the percent fines.

Freeze-core samples have irregular shapes that depend on how far the freezing advanced
outward from therod. Irregular core shapes can cause an unrepresentative particle-size
distribution of the sample. Large particles that are only partially frozen to the core might
be lost during retrieval. Because large particles occur most frequently near the bed
surface, but are likely to be lost during the sample retrieval, freeze-core samples tend to
underrepresent the coarse particles of the armor layer. Conversely, afew large particles
frozen to the core can dominate the sample mass and underrepresent the amount of fine
sediment (Rood and Church 1994). However, Thoms (1992) found that freeze-core
samples are more representative of the true bed-material particle-size than grab samples.
A comparative study by NCASI (1986) found that tri-tube samples underestimate the
percent fines smaller 4 mm to alesser extent than single-tube freeze-cores. Repeated tri-
tube samples aso have alower variability in measured percent fines than single-tube
samples. Ramos (1996) summarizes various studies comparing freeze-core samples with
samples from the McNeil and other samplers.

4.2.4.9 Resin cores

Resin cores of sediment are obtained by pouring liquid resin into asmall vertical hole that
is created by forcing and retrieving arod into the bed material. The hole may be
approximately 1 m deep. Dueto its viscosity, resin penetrates farther into the sediment
when pore spaces are large, thus collecting large volumes of porous sediment layers and
small volumes of tightly packed sediment layers. Resin cores can only be
granulometrically analyzed by cutting the hardened core and applying thin section
techniques used for sandstone or conglomerates (Adams 1979; Neumann-Mahlkau 1967).
Resin cores, however, provide an excellent visual image of the bed stratigraphy.

4.2.4.10 Hybrid samplers: combined pipe and freeze-core sampler, or excavated
freeze-cores

Rood and Church (1994) developed a hybrid sampler that combines the advantages of a
McNeil and a freeze-core sampler: it produces a predefined sample volume contained
within a pipe and a core that can be analyzed stratigraphically. The hybrid sampler has
two major components: (1) atoothed pipe, or core barrel, 0.2 m in diameter with an
upward extension pipe 1 m long and 0.065 m in diameter, and (2) a freeze-core probe 1.5
m long, and 0.05 m in diameter with a hardened tip (Fig. 4.30).
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The hybrid sampler is designed for use in gravel beds and is particularly useful for
analyzing spawning gravel that contain no cobbles. Two people work the core barrel into
the gravel bed to a minimum depth of 0.3 m, the depth of redds built by spawning
salmonid fish. The freeze-core probe is placed inside the extension pipe and driven into
the bed with a sledgehammer, until the tip of the probe extends below the bottom of the
core barrel. 6 - 8 litersof liquid nitrogen are poured into the freeze-core probe. After
approximately 5 minutes the sampleisfrozen. The core barrel istwisted to break the
freezing at the bottom of the core and then lifted out of the bed by one or two people. A
small inflatable raft is useful for transporting the core to the bank. The frozen coreis
removed from the core barrel, and particles frozen to the freeze-core probe are either
chipped off with a hammer or the entire sampleisleft to thaw. The sample can be split
into several layers before bagging.

Maximum sample volume of the hybrid sampler is approximately 10 liters or the volume
of a household pail. Maximum sample massis about 13.5 kg. Repeated samples are
necessary to obtain a sample mass sufficiently large to analyze a particle-size distribution
that extends into the cobble range. The hybrid sampler can be used in any wadable flow,
but is restricted to gravel beds with particles smaller than 128 mm. Due to the heavy
equipment and the large amount of liquid nitrogen needed for repeated sampling, road
access to the sampling site is desirable.

4.2.5 Volumetric sampling in deep water

If water becomes too deep for wading, bed material can either be sampled by one of the
methods described in Section 4.2.4 using trained divers, or an attempt can be made to
sample bed material using towed dredges (Burrows et al. 1981). Dredges are pipes or
boxes with a cutting edge or teeth at the front and a mesh screen or a mesh bag at the back
end (Fig. 4.31). Asthedredgeis pulled over the stream bottom, the cutting edge cuts a
few cm into the bed material while the forward motion accumulates the sediment inside
the dredge. Water moves through the dredge and out the screen at the tail end. Dredges
are best used for sampling relatively fine and unstratified sediment. Hilton and Lisle
(1993) and Lisle and Hilton (1999), for example, used a pipe dredge to sample fine
sediment accumulated in pools (Section 6.6.2).

It is difficult to obtain representative samples with dredges in deep streams with coarse
beds. Pipe dredges must be sufficiently heavy to dig into the bed and large enough to
accommodate the largest bed-material particles. Towed box dredges must have a properly
adjusted cable length to maintain a horizontal position. Surface and subsurface sediment
ismixed in adredged sample, so that the percent surface or subsurface sediment contained
in the sample is unknown. The maximum particle size that can be sampled depends on
the dredge opening. The likelihood of collecting a particle with adiameter close to that of
the dredge opening is rather small. Sample volume depends on the size of the dredge,
which in turn depends on whether the dredge is operated by hand or by machinery.
Another drawback is that sediment collected with towed dredges can not be designated to
a specific streambed location, and the rate of fill can vary as the dredge is towed.
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Fig. 4.31: (a) Pipe dredge for gravel sediment; (Redrawn from Y uzyk (1986). (b) Box dredge; (Redrawn
from Lewis and McConchie (1994), by permission of Chapman and Hall).

If the surface sediment size is a concern in streams with coarse beds, underwater photos
taken by divers and analyzed by the photo-sieving method (Section 4.1.3.3) (Ibbeken and
Schleyer 1986) is an aternative to dredging. Underwater photo sieving requires clear
water and awater depth of more than 2 m.

4.3 Conversion of sample distributions: grid - areal - volume, and
number - weight

Bed-material samples may be obtained by three different techniques: grid samples (i.e.
pebble counts) (Sections 4.1.1 and 4.1.2), areal samples (Section 4.1.3), and volumetric
samples (Section 4.2.1). Particle-size distributions can be analyzed by a number
frequency of particles per size class (by-number), or a frequency-by-weight (by-weight).
The three methods of sampling (grid, areal, and volumetric) and two methods of particle-
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size analysis (by number and by weight) may be combined to six possible ways of
sampling and analyzing bed-material. The terminology describing the methods of both
sampling and analysisis as follows:. a grid-by-number sample refers to agrid sample
analyzed by a number frequency (abbreviated by g-n); an area-by-weight sample refersto
an areal sample analyzed by its weight frequency (a-w). The terminology for the other
combinations of sampling and analysis follows the same pattern. Analyzing avolumetric
sample by a number-frequency (volume-by-number) is theoretically possible, but usually
not very practical, and therefore not further discussed.

If streambeds span awide range of particle sizes, severa methods of sampling or analysis
may have to be employed to representatively sample all particle sizes at one site, an
approach called hybrid sampling. Boulders, for example, can only be included in a
surface sample if awidely spaced pebble count is used, whereas representative sampling
of fine surface sediment requires an areal sample. Another example is the comparison of
surface and subsurface sediment. The surface may be sampled with an areal sample,
while the subsurface is sampled volumetrically. Meta-studies that analyze bed-material
samples from previous studies in a new context are likewise faced with samples taken or
analyzed by different techniques.

Different methods of sampling and analysis applied to the same deposit produce different
particle-size distributions. Area-by-weight samples, for example, have coarser
distributions than volume-by-weight samples from the same deposit. Thus, before
samples derived from different sampling methods can be combined or compared (Section
4.4), their size distributions have to be transformed into the size distribution of the same
sample and analysis category.

Several methods have been proposed for conversion of particle-size distributions between
different categories of sampling and analysis. Kellerhals and Bray (1971) introduced the
voidless cube model as ameans to explain the different particle-size distribution that may
result from the five categories of sampling and analysis. They proposed factors for the
conversion of a particle-size distribution obtained by one method of sampling and analysis
into the distribution obtained by another method of sampling and analysis. Diplas and
Fripp (1992) introduced the modified cube model to explain that differences between
observed and computed conversions between areal and volumetric samples are due to
sediment characteristics and the penetration depth of the adhesive used for areal sampling.
Fraccarollo and Marion (1995) argued that the assumed similarity between grid-by-
number and volume-by-wei ght samples does not hold when a more realistic model of
surface particlesis applied (split plane surface model). Also, because it is difficult to
make the adhesive penetrate to exactly a specific depth, Marion and Fraccarollo (1997)
based the conversion between areal and volumetric samples on a computed penetration
depth of the adhesive.
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4.3.1 Voidless cube model

Kellerhals and Bray (1971) used amodel deposit comprised of a mixture of three cube
sizes packed without voids (voidless cube model) (Fig. 4.32) to determine conversion
factors between the various combinations of sampling method and sample analysis. The
cube model represents an idealized deposit of spheresin a systematic and lose, but
voidless packing. The cubes have the three sizesof D; =1, D, = 2, and D3 = 4 (any linear
unit, e.g., cm). The surface area A taken up by particles with asize of D4, D,, and D3 isA
=D?andyields A, = 1, A, = 4, and As = 16 (e.g., cm?), respectively. Particle volumeis
computed by V = D® and yields V; = 1, V., = 8, and V5 = 64 (e.g., cm®). Cubes of each size
class take up the same portion of the total volume, i.e., 33.33%. A particle density of 1is
assumed, so that volume equals weight. The number of particles of the sizes D4, D,, and
D3 contained in the total sediment volumeisn; = 4608, n, = 576, and n3 = 72. The
number of surface particles ng,r1 = 192, Ngyri2 = 48, Ngyr3 = 12 (Table 4.5 aand b).
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Fig. 4.32: Model of densely packed cubes (voidless cube model) developed by Kellerhals and Bray (1971).
(Redrawn from Kellerhals and Bray (1971), by permission of the American Society of Civil Engineers).

Tables 4.6 aand b demonstrate the different particle-size distributions that are obtained if
particles from a deposit mimicked by the voidless cube model are sampled and analyzed
by different methods. The particle-size distribution of an area-by-weight sample, for
example, is ssimulated by multiplying the number of surface particles per size class with
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their respective volume. The resulting values are then expressed as percent frequencies
(Table4.5a). A grid-by-number sampleis simulated by multiplying the number of
surface particles per size class by their area (Table 4.5.b).

The cumulative frequency distributions obtained by sampling the voidless cube model
with grid, areal, and volumetric methods analyzed by a weight and a number frequency
are plotted in Fig. 4.33. The voidless cube model yields the same particle-size
distribution for volume-by-weight and grid-by-number samples. Area-by-weight and
grid-by-weight samples are coarser than volume-by-weight or grid-by-number samples,
whereas area-by-number and volume-by-number samples are considerably finer. The Dsg
of the area-by-number sample is smaller than the D5y of the volume-by-weight and grid-
by-number sample by afactor of 1.5, whereas the Ds of the area-by-weight sampleisa
factor of 1.5 coarser.

Table4.5 a: Particle-size distributions obtained from collecting volumetric, areal and grid samples from the
voidless cube model and analyzing the samples by aweight frequency (i.e., volume-by-weight, area-by-
weight, and grid-by-weight samples).

(vol.-by-number) vol.-by-weight area-by-weight grid-by-weight
D A=D?’Vv=D® n n-v % Nest Nari- V% Nerts AV %
1 1 1 4608 4608 333 192 192 14.3 192 1.4
2 4 8 576 4608 33.3 48 384 28.6 1536 11.0
4 16 64 72 4608 33.3 12 768 57.1 12288 87.7
b3 5256 13824 1000 252 1344  100.0 14016 100.0

D = particle size, eg., incm; A = particle area; V = particle volume which equals weight if a particle density
of 1 isassumed; n = number of the particles per size class; % = percent frequency; ng,s = humber of surface
particles per size class.

Table4.5b: Particle-size distributions derived by collecting areal and grid samples from
the voidless cube model and analyzing the samples by a number frequency (i.e., area-by-
number, and grid-by-number samples). The volume-by-weight sample is shown for

comparison.
vol.-by-weight area-by-number grid-by-number
D A=D*Vv=D® n nv % Neurt %  negi A %
1 1 1 4608 4608 33.3 192 76.2 192 333
2 4 8 576 4608 33.3 48 19.0 192 33.3
4 16 64 72 4608 33.3 12 48 192 33.3
b3 5256 13824 100.0 252 100.0 576 100.0
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Conversion factors

Conversion factors consist of two parts: the conversion between methods of particle-size
analyses (weight or number frequency), and the conversion between the various sampling
methods (grid, areal, and volumetric). Table 4.5 aand b show that the difference between
aby-number and by-weight sample is the factor V (particle volume) or D°. Thus,
converting a number frequency to aweight frequency requires multiplying the weight
frequency of particles per size class by the particle size cubed (D?). Conversely,
multiplying the weight frequency of particles per size class by the reciprocal of their
cubed particle size (1/D?) yields the distribution in terms of frequency-by-number.

The conversion system is similar between samples that are analyzed alike, but sampled
with different methods. Table 4.5 aand b show that the difference between volume and
grid samplesis afactor of V or D3. Thus, a particle-size distribution of a volumetric
sample yields the particle-size distribution of a grid sample when the frequency of all
particle-size classes is multiplied by D*, whereas multiplication by the factor 1/D°
converts agrid sample to a volumetric sample. Converting a volumetric sample to an
areal sample requires multiplication by the factor D, whereas the conversion from an aredl
sample to a volumetric one requires multiplication by 1/D. Finally, afactor of D?
converts an areal sampleinto agrid sample, and 1/D? converts agrid sampleinto an
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areal sample, assuming the same method of analysisin both cases. Table 4.6 summarizes
these factors. Conversion factors assume spherical particles for which the sieve diameter
D approaches the nominal diameter Dy, (EQ. 2.1 in Section 2.1.2), avoidless particle
packing, and the same density for all particles. In astrict sense, the conversion factorsin
Table 4.6 apply only to these conditions. If used for deposits with other properties, the
conversion factors yield only an approximation.

Table 4.6: Conversion between samples analyzed
or sampled by different methods.

Conversion from — to: Factor

Different methods of analysis:
weight frequency — number frequency ... 1/D?

number frequency — weight frequency ... D?

Different sampling methods:

volume — grid................. D?
grid > volume................. 1D?
volume — area................. D
area —» volume................. 1D
area - grid.................... D?
grid > area...........oooou.... 1/D?

The two parts of a conversion factor, one that accounts for converting sampling methods,
and one that accounts for converting different methods of analysis, need to be applied
together when converting particle-size distributions obtained by different methods of
sampling and by different analysis. For example, to convert avolumetric sample
anayzed on the basis of weight frequency (volume-by-weight) to an areal sample
analyzed on the basis of a number frequency (area-by-number), the frequency distribution
needs to be multiplied by the product of D - 1/D* (D for conversion of volume - area)
and 1/D° for conversion of weight — number-frequency. The product D - 1/D?isthen
simplified to /D% Similarly, the conversion of a volume-by-weight sample to a grid-by-
number sample is obtained by applying the factor D* - 1/D* = 1, which means that both
particle-size distributions are identical and do not require any conversion in order to be
compared or combined. Table 4.7 lists the conversion factors used for the various
combinations of sample methods and methods of analysis.

Conversion factors are also expressed in terms of the exponent that D takesin the

conversion factor. A conversion factor of 1/D? = D is then referred to as using an
exponent of -2 for the conversion.
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Table 4.7: Conversion factors for samples collected by various methods (from
Kellerhalsand Bray 1971). Numbersin the gray bars express the conversion factor asthe
exponent of D.

Conversion to
Conversion™,  Volume-by- Grid-by Grid-by Area-by Area-by

from weight number weight number weight
Volume-by- 1 1 D? 1/D? D
weight 0 0 3 -2 1
Grid-by 1 1 D? 1/D? D
number 0 0 3 -2 1
Grid-by 1/D? 1/D? 1 1/D° 1/D?
weight -3 -3 0 -5 -2
Area-by D? D? D° 1 D®
number 2 2 5 0 3
Area-by 1/D 1/D D? 1/D? 1
weight -1 -1 2 -3 0

Converting a particle-size distribution

Table 4.8 shows how a particle-size distribution is transformed, using the example of an
area-by-weight sample that is converted to a grid-by-number sample. To apply the
conversion factors (Table 4.7) to a particle-size distribution (Table 4.8), particlesize D is

Table 4.8: Conversion of an areal sample expressed as weight frequency (area-by-weight) to
a surface grid sample expressed as number frequency (grid-by-number) (dightly modified
from Kellerhals and Bray 1971).

area-by-weight grid-by-number
Size class Center of class adj. to 100%

D; Freg.  Cum freq. Dic Freg.- 1/D;. Freqg. Cum. Freq.
(mm) (%) (%) (mm) (%) (%)

2.8 2 0 3.3 0.60 11.7 0.0

4 1 2 4.8 0.21 4.1 11.7

5.67 2 3 6.7 0.30 5.8 15.8

8 5 5 9.5 0.53 10.3 21.6
11.3 13 10 134 0.97 189 31.9
16 17 23 19.0 0.89 175 50.8
22.6 19 40 26.9 0.71 13.8 68.3
32 22 59 38.1 0.58 11.3 82.1
45.3 16 81 53.8 0.30 5.8 934
64 3 97 76.1 0.04 0.8 99.2
90.6 0 100 0.0 100.0
total: 100 511 100.0
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expressed by the center of class Dic which is computed from the geometric mean particle
size (Section 2.1.5.3) of the size fraction (equal to the logarithmic mean of particle sizes
in mm, or arithmetic mean of particle sizesin @-units). The cumulative frequency
distributions of the area-by-weight sample converted into a grid-by-number sample are
shown in Fig. 4.34.

100 1— ‘ ‘ ‘ ‘ ‘
1 I I Grid-by-number

80 Volbywegn %

Percent finer

28 567 113 226 453 906
4 8 16 32 64

Particle size class (mm)

Fig. 4.34: Particle-size distribution of the area-by-weight sample in Table 4.8 converted into a grid-by-
number sample (or volume-by-weight sample) using a conversion factor of 1/D ( = -1.0) (after Kellerhals
and Bray 1971) and using a conversion factor of - 0.5 as proposed by Parker (1987). Ds, particle sizesare
27.6 mm for the area-by-weight sample, 15.7 mm for the grid-by-number and volume-by-weight samples
using a conversion factor of -1.0, and 20.6 mm for a conversion factor of -0.5.

The geometrically-based conversion factors obtained from the voidless cube model
yielded perfect results in the mutual conversion of a grid-by-weight to a grid-by-number
frequency and confirmed earlier results by Sahu (1964) and Leopold (1970). Kellerhals
and Bray (1971) concluded that their conversion factors should be applicable to any
sediment and that grid-by-number and volume-by-weight analysis should yield identical
results when applied to non-stratified gravel beds. The convertibility of the two methods
was confirmed by Church et. al. (1987) who used different sampling methods on a gravel
mixture that was shaken in a closed box to form arandom, non-stratified, homogeneous
deposit. Even when tested on bed material taken from various Alberta streams, the
conversion factors yielded acceptable results. Note, however, that most gravel-bed
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rivers, and especially mountain streams, are vertically stratified (Section 3.2); surface
sediment is coarser than subsurface sediment. Consequently, surface pebble counts
correctly indicate a coarser particle size-distribution than the volumetric sample of the
subsurface sediment.

Controversies about conversion factors

Several studies have observed that the conversion factors proposed by Kellerhals and
Bray (1971), particularly the conversion between areal and volumetric samples, do not
apply under all circumstances. The observed incompatibility has been attributed to the
over-simplified description of bed-material surfaces by the voidless cube model.

4.3.2 Modified cube model

The voidless cube model by Kellerhals and Bray (1971) indicates a factor of 1/D (i.e., an
exponent of D of -1) for converting an area-by-weight sample into a volume-by-weight
sample for homogeneous material. However, when applied to gravels from stratified and
armored deposits, researchers found that the conversion factor exponent of -1 yielded
grain-size distributions that are too fine (Ettema 1984). Gomez (1983), Anastas (1984),
Parker (1987), Diplas and Sutherland (1988), and Diplas (1989) proposed substituting the
exponent with avalue of approximately -0.4 to -0.5. An exponent of -0.5 refersto a
conversion factor of /D>, Fig. 4.34 shows that a conversion factor of /D (i.e., and
exponent of -0.5) provides aless fine distribution of the area-by-weight sample converted
to volume-by-weight or grid-by-number sample than an exponent of -1.

The necessity of raising the exponent from -1 to approximately -0.5 isaresult of an
opposing sampling bias for fine sediment in surface grid counts and areal samples.
Surface grid samples or pebble counts easily neglect fine particlesin voids, whereasin
areal samples a deep penetration of the adhesive into subsurface sediment may collect
more fines than present in the surface layer. Theinclusion of surface fines by adhesive
areal samples produces afiner surface-size distribution than surface grid samples. Based
on this observation, Diplas and Sutherland (1988) devel oped the hypothesis that the
exponent needed in the conversion factor of area-by-weight to volume-by-weight depends
on the depth to which surface particles are actually included into the areal sample. To
illustrate their point, they modified the voidless cube model used by Kellerhals and Bray
(1971) (Fig. 4.32) into a void-containing cube model, in which voids take the same size
and volume as the size and volume of the smallest particle-size class. Thisresulted in a
cube model with 33% porosity, avalue typical of fluvial deposits.

An adhesive areal sample of a deposit with surface voidsislikely to include small
particles from the next layer under a surface void. These small particles would not have
been extracted by a sampling method such as adhesive tape that is truly restricted to
surface particles only. Modeling adhesive areal samples from the modified porous cube
model, Diplas and Sutherland (1988) and Diplas (1989) obtained finer particle-size
distributions for an areal sample than predicted by the voidless cube model of Kellerhals
and Bray (1971). Diplas and Sutherland (1988) and Diplas (1989) determined that an
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exponent of -0.42 was an appropriate conversion factor for areal samples obtained using
adhesives. The general validity of aconversion exponent of -0.4 to -0.5 was confirmed in
subsequent laboratory experiments.

Effect of porosity, sediment size, sorting, and sampling depth on the conversion
exponent

Based on previous findings which suggested that the exponent might shift from-1.0 to -
0.5 for sediment that is more porous, finer in particle size, and better sorted, Diplas and
Fripp (1991) conducted a study to specifically address these issues. The void-containing
cube model determined a pronounced decrease of conversion exponents from 0 to - 0.5 for
very-well sorted deposits with aratio of Dgo/D1o Smaller than 2.5, whereas poorly sorted
deposits with aratio of Dgo/D19 larger than 8 required conversion factors of -0.8 to -0.9.
However, the dependency on sediment sorting was less pronounced in laboratory
experiments.

A series of experiments by Diplas and Fripp (1992) showed that the depth (and thus the
conversion factor) at which an areal sample becomes volumetric depends on several
factors of the particle-size distribution for the sediment used in the experiments. Ared
wax samples were taken from different mixtures of framework-supported (sand content <
20 or 25%) and matrix-supported gravels (sand content > 30%) (see Fig. 3.14 aand 3.14
d). The abundance of fine sediment in matrix-supported gravels prevented the deep
penetration of the wax, rendering the sample a true surface sample for which the
conversion factor exponent of -1, established by Kellerhals and Bray (1971), is generally
valid. Similarly, if an adhesive tape that only picks up true surface particles was used for
sampling, the conversion exponent should be -1, as predicted by Kellerhals and Bray
(1971). Laboratory experiments confirmed these results with exponents ranging from
-0.9to-1.19.

For framework-supported gravels, the penetration of wax was generally deeper, but
depended on the overall particle size of the mixture. In coarse framework-supported
sediment mixtures, areal wax samples required a conversion factor exponent of -0.5, while
for generally fine framework-supported gravels, the conversion factor exponent varied
between -0.5 and +0.5, with an average of 0.

An exponent of -1 should be appropriate for converting area-by-weight particle-size
distribution produced from photo-sieving into a grid-by-number (e.g., for comparison
with pebble counts) or volume-by-weight distribution. Particles smaller than 10 mm,
which could potentially be part of the subsurface and require a conversion factor larger
than -1.0 (i.e., towards -0.5) are explicitly excluded from a photo sieving analysis. Table
4.9 summarizes the results of the findings.
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Table 4.9: Approximate value of the conversion factor exponent required for converting the particle-size
distribution of an area-by-weight sample into a volume-by-weight sample in deposits of different
characteristics, based on results of several studies.

Approximate value of the conversion factor exponent

-1.0

-0.5 -0

Determined from voidless cube
model (Kellerhalsand Bray 1971)

Determined from void-containing
cube model (Diplasand

Sutherland 1988)

Coarse and fine matrix-supported
gravel with high sand content

Frame-work supported gravel,
esp. coarse gravel deposits

Fine frame-work gravels

Deposits of low porosity Deposits of high porosity

Coarse gravel deposits Deposits of fine gravel and sand

No depth penetration of
adhesive e.g., adhesive tape

Deep penetration of adhesive
into subsurface sediment

Poorly sorted gravel deposits Well-sorted gravel deposits Very-well sorted gravel

Photo-sieving

4.3.3 Conversion based on computed penetration depth

Many applications require a particle-size distribution in terms of volume-by-weight, but
surface sediment can only be sampled by a surface grid sample (i.e., pebble count) (fine -
coarse gravel) or an areal sample (sand - fine gravel). Conversion of an area-by-weight to
avolume-by-weight particle-size distribution is problematic, because the exponents for
the conversion vary with the adhesive penetration depth which in turn depends on factors
such as sorting, particle-size, porosity, and on the adhesive viscosity (Section 4.3.2). The
combination of these factors makesit difficult to control the exact penetration depth.

To avoid these problems, Marion and Fraccarollo (1997) developed a conversion
procedure in which the exact depth of penetration isirrelevant. The conversion algorithm
computes the adhesive penetration depth d,, which is then used to compute the particle-
size distribution of the corresponding volume-by-weight distribution for each size class
(pio). Thealgorithm is applicable over arange of penetration depths and can account for
the case in which the adhesive penetrates so deeply that the presumed areal sampleisin
fact volumetric. In this case, the conversion procedure does not produce a different
distribution.

The penetration depth d, of the adhesive is computed from
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k s 1-
M= 3 m=—2 As (1 - pyo)

4.7
2 M7 pa(dy+ D) “7
=1

My IS the total weight of the sample, k is the number of size classes, m; isthe weight of
the jth size class, ps is sediment density, As is the sampling area covered by the areal
sample, pyo is the porosity and set to a value within the range 0.3 — 0.4, pj a.w iS the weight
fraction of the jth size class for the area-by-weight sample (m/my), d, is the adhesive
penetration depth, and D; is the particle size of the ith size class.

Eq. 4.7 is solved iteratively, using the size of the Dsg particle as a starting value for dp.
The denominator is solved for all size classes and summed. The numerator is solved next
and is constant for all size classes. The total weight of the sample my,: computed from EQ.
4.7 is compared with the actual measured sample weight. d; is then adjusted until the
computed my matches the measured my:. The resulting value of dj, is the penetration
depth and usually corresponds to a particle size between the D, and the Dgy. The
percentage of total volume occupied by particles of theith size fraction, p; o is computed
from Eq. 4.8.

002 Piaw (1 - Pvo)
1,0— k
(dp + Dil2) 3 Pjaw/(do + Dif2)
=1

(4.8)

An example computation is provided in Table 4.10. The three particle-size distributions
of the original area-by-weight sample, the converted volume-by-weight sample, and an
actual volume-by-weight sample taken from the deposit (last column of Table 4.10) are
plotted in Fig. 4.35.

4.3.4 Split plane surface model

The voidless cube model used by Kellerhals and Bray (1971) for conversion between
different methods of sampling and analysis determined that grid-by-number and volume-
by weight samples of unstratified deposits have the same distribution and are therefore
directly comparable. However, Fraccarollo and Marion (1995) caution that a voidless
cube model is a poor representation of areal sediment deposit and not generally
applicable. They proposed that if voids were properly accounted for both in a modeled
sediment surface as well as in the sampling process, grid-by-number samples would have
finer distributions than volume-by-weight samples. Consequently, the correspondence
between grid-by-number and volume-by-weight samples may be considered a sampling
artifact, caused by neglecting the presence of voidsin the voidless cube model, aswell as
by neglecting to sample particlesin voids when doing pebble counts.
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Table 4.10: Example computation of the adhesive penetration depth d, and the particle-size distribution of
the converted volume-by-weight sample p;,o, using the parameter listed below.

Ps (g/mm2): 0.00265 d, (mm) comp., (start with Dsp): 4.0

As (mm3): 14,000 My (computed from Eq. 4.7) (g):  146.2

Pv,o (-): 0.32

Area-by-weight sample Converted vol.-by-weight sample  Vol. sample
Di m Paw  Piaw Piaw/(d+Di/2) Pio Pio Pio Piv-w
(Eq. 4.7, (Eg. 4.8) (for
denominator) comparison)

(mm) (9) ) (%finer) (1/mm) ) (%) (%finer) (%finer)
0.18 5.8 0.040 0.0 0.010 0.037 5.7 0.0 0.0
0.25 4.4 0.030 4.0 0.007 0.027 4.2 5.7 5.0
0.35 3.0 0.020 7.0 0.005 0.018 2.8 9.9 10.0
0.5 3.0 0.020 9.0 0.005 0.018 2.8 12.7 14.0
0.7 29 0.020 11.0 0.005 0.017 2.7 15.4 175
1 2.2 0.015 13.1 0.003 0.013 2.0 18.1 20.0
14 51 0.035 14.6 0.007 0.028 4.3 20.1 225
2 6.6 0.045 18.1 0.009 0.034 52 244 26.0
2.8 285 0.019 22.6 0.036 0.136 21.0 29.7 33.0
4 394 0.027 42.1 0.044 0.169 26.1 50.6 54.0
5.6 21.9 0.150 69.1 0.022 0.082 12.8 76.7 78.5
8 13.1 0.090 84.1 0.011 0.042 6.5 89.4 90.0

11.3 8.7 0.059 93.1 0.006 0.023 3.6 95.9 94.0

16 15 0.010 99.0 0.001 0.003 0.5 99.5 98.0

22.6 _ 00 0.000 100.0 0.000 0.000 0.0 100.0 100.0

total:  146.1 1.000 0.673 0.650 100.0

Fraccarollo and Marion (1995) suggest that a more realistic model of a sediment surfaceis
obtained by a sediment model consisting of ablock of sediment with irregularly-shaped
particles of various sizes that is split apart along a plane (imagine a split block of frozen
sediment). Inthe model of the split plane, particles on the split line are assigned to that
part of the split block in which their center of gravity islocated (Fig. 4.36). The
areaunder alarge particle that was assigned to the other part of the block islikely to
contain particles that are smaller than the large particle that was lost to the other side,
especially in matrix-supported gravel. Sampling such a split surface by a grid-by-number
sampleincludes alarger proportion of fines than a volume-by-weight sample and makes
the grid-by-number sample similar to an area-by-number distribution of particle sizes.

The model of surface-particle sizes proposed by Fraccarollo and Marion (1995) hasfine
surface particles in very exposed positions directly at the surface. This particle
arrangement is not representative of armored beds in which fine surface particles are
generaly scarce and are not found exposed, but hidden between large particles. The
model proposed by Fraccarollo and Marion (1995) is more likely to represent surfacesin
aggrading streams with ample fines between large particles. In such streams, surface grid-
by-number counts may be finer than volume-by-weight samples. The proposed finer
distributions of grid-by-number than volume-by-weight samples are aso contingent upon
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Fig. 4.35; Particle-size distribution of an area-by-weight sample collected from a surface comprised of sand
and fine gravel (Dsy = 4 mm), and its conversion to a volume-by-weight equivalent. The distribution of a
volume-by-weight sample is shown for comparison (based on data by Marion and Fraccarollo 1997).

Fig. 4.36: Schematic of surface (gray particles) generated by split plane; Bold line indicates surface profile.
(Redrawn from Fraccarollo and Marion (1995), by permission of the American Society of Civil Engineers.

accurate sampling of fine particlesin interstitial voids. However, pebble counts on
armored coarse gravel or cobble beds can not practically include interstitial fines to their
full extent, especially not when the sample must be collected under water or under adverse
conditions (Section 4.1.1.3). Thus, fines are underrepresented due to practical
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restrictions of pebble counts or grid samples, and it seems that this underrepresentation
brings grid-by-number samplesinto arelatively close correspondence with volume-by-
weight distributions.

4.4 Combination of two particle-size distributions

Fluvia deposits with wide particle-size distributions ranging from sand to boulders often
require several sampling methods in order to sample all particle sizes present in the reach.
Most sampling methods, however, sample only a portion of the bed-material particle-size
distribution in arepresentative way. A surface pebble count (Section 4.1.1), for example,
can representatively sample particle sizes between medium gravel and small boulders.
However, pebble counts may not accurately characterize the sediment finer than 8, or 2
mm, depending on the sampling conditions. Areal samples, on the other hand, can
accurately determine the fine part smaller than 40 mm of a sample, particularly if clay is
used as an adhesive to collect the sample (Section 4.1.3.2). However, coarse gravels and
cobbles cannot be sampled by areal methods. Thus, in order to characterize the entire
bed-material surface distribution within areach, a grid-by-number pebble count and
several areal samples, which have been converted to equivalent distributions of grid-by-
number samples before, (Section 4.3) need to be combined.

Several methods are available for combining two particle-size distributions:

* Rigid combination,
* FHexible combination, and
* Adjustment of frequency distributions.

4.4.1 Rigid combination

If the coarse portion of a pebble count size-distribution is considered representative for a
reach, only the fine part of a pebble count needs to be adjusted to the fine part of an areal
sample (converted to a grid-by-number sample beforehand) to obtain adistribution
representative of all particle sizes. The rigid combination method presented by Anastasi
(1984) and Fehr (1987) facilitates this adjustment. The method uses the percentile ratio
between an areal sample and a pebble count at the lower and upper border of one selected
particle-size class to create a new cumulative frequency distribution for the fine part for
the pebble count.

Within the range of particle sizes common in both samples, one particle-size classis
sought in which the ratios between the lower and an upper percentiles of the areal sample,
Patow 8Nd Pa up, and the lower and upper percentiles of the pebble count, ppow and pe yp,
are as Similar as possible (see Eq. 4.9 and gray barsin Fig. 4.37 a- ¢). Notethat all
percentiles are used as decimals (e.g., 0.23 instead of 23 % finer).
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Fig. 4.37: Rigid combination (= =) between an areal sample and a pebble count to form a new fine part of
the pebble count size distribution, using three different particle-size ranges of similarity (gray bars): 4 — 5.6
mm (a), 5.6 —8 mm (b), and 8 — 11.3 mm (¢). The cumulative percent finer was computed as decimals, but

plotted as percentage.
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PAlow — Priow

Pe o (4.9)

The rigid combination methods computes the percentiles p; ; (subscript r for rigid) for
each particle size D; of the fine part of the combined pebble count size-distribution from:
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Pri = Pai-

QP low

DA low (4.10)

Example 4.2:
Table 4.11 provides an example computation for arigid

combination of two particle-size distributions. The particle-size
range 5.6 — 8 mm was considered to be similar for the areal
sample and the pebble count. The percentiles of the areal sample
and the pebble count at the upper and lower border of the selected
similarity range, i.e., at 5.6 and 8 mm, were read as pp , = 0.60, pp
low = 0.46, payp = 0.95, and paiow = 0.83. The similarity ratio in

Table4.11: Computation of arigid combination between an areal sample and a
pebble count. The selected particle-size range of similarity is between 5.6 and.
8 mm.

Cumulative size distribution X,
Areal sample  Pebblecount Rigid combination

Di = Pa = Pri =P
(mm) 03] (02) (%)
0.35 0.00 0.000
05 0.03 0.017
0.7 0.07 0.039
1.0 0.13 0.072
14 021 0.116
20 0.32 0.00 0.177
28 0.45 0.09 0.249
4.0 0.61 0.260 0.338
56 0.83 =pPaiow 046 = Ppioy = 0.460
8.0 095 =payp  0.60 = Ppyp
11.3 1.00 0.71
16.0 0.80
22.6 0.87
32.0 0.92
453 0.955
64.0 0.975
90.6 0.99
128.0 1.00




Eqg. 4.9is0.77 = 0.87. For the particle size D; = 2.8 mm, for
example, the percentiles of the adjusted fine part of the pebble
count are computed aspr2s =0.45 - 0.554 = 0.249 = 24.9% (Eq.
4.10)

Results of the rigid combination vary depending on the particle-size range that is selected
for similarity. Fig. 4.37 showsrigid combinations that adjust the fine (unrepresentative)
portion of a pebble count to an areal sample for three different particle-size ranges
selected for similarity. Only the selected range of similarity in Fig. 4.37 b yields a smooth
adjustment. This variability makes it necessary to repeat computations for several similar
size ranges and to select aresult that best fits the study objective.

4.4.2 Flexible combination

A flexible combination (Anastasi 1984; Fehr 1987) generates a completely new particle-
size distribution, combined from the distribution of a pebble count and an areal sample
(converted to a grid-by-number sampler beforehand) (Fig. 4.38). The distribution
obtained from a flexible combination resembles a hand-drawn adjustment curve that
extends from the coarse end of the pebble count distribution to the fine end of the aredl
sample.

Following the same approach as with the rigid combination in Section 4.4.1 (Eqg. 4.9), a
particle-size classis sought for which the frequency is similar in both samples (similarity
range), so that

Pa low ~ Pr 1ow (see Eq_ 4_9)

pA up pP up

Patow @Nd pa yp are the lower and an upper percentiles of the areal sample, and pp 0w and pp
up are the lower and upper percentiles of the pebble count. All percentiles are used as
decimals. The fine part of the new distribution below ps 10w (subscript f for flexible) and
the coarse part above pr , are each generated using a different equation. The fine portion
of Prigine) 1S cOMputed from

Pt low (4.11)

Pricing) = Pai- DA low

pai isthe percentile of the areal distribution for theith size class. pr 10w IS the percentile of
the flexible combination at the lower border of the similarity range and is computed from
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Fig. 4.38: Flexible combination (= =) between an areal sample and a pebble count, for three different
particle-size ranges of similarity (gray bars): 2.8 —4 mm (@), 4 — 5.6 mm (b), and 5.6 —8 mm (c). Results
show minimal variations between different selected ranges of similarity.
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(1-priow) - (1-pPpup)
AL 1 o) - (1- peup)

pA low

Pt 1ow = (4.12)

Pp 10w @Nd Py yp are the percentiles of the pebble count at the lower and upper border of the
similarity range. The coarse portion of pri(coarse) A00OVE the upper border of the similarity
range pr yp is computed from

1_9 .
Pri(coarse) = 1_pp|| - (Priow-1)+1 (4.13)

ow

The percentile of the flexible combination p , at the upper border of the similarity range
is

Prow: (4.14)

pA low

Pt up = Priow:

Example 4.3:
Table 4.12 provides an example computation for the flexible

combination of two particle-size distributions. The particle-size
range of 4 —5.6 mm was considered to be similar for the areal
sample and the pebble count (grid sample).

The percentile of the flexible combination at the lower border of
the similarity range at 4 mm s (Eq. 4.12):

) (1-0.26) - (1-0.46)
Priow =0.83/0.61)- (1-0.26) - (1-0.46)

0.2 0.2

The percentiles of the areal sample and the pebble count at the
upper and lower border of the similar range, i.e., at 4 and 5.6 mm,
were read as paiow = 0.61, paup = 0.83, ppiow = 0.26, and pp yp =
0.46. The similarity ratiosin Eq. 4.9 were 0.61/0.83 = 0.57 and
0.26/0.76 = 0.73.
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Table 4.12: Computation of aflexible combination between an areal sample and
apebble count. The selected particle-size range of similarity is between 4 and
5.6 mm (see gray band).

Cumulative size distribution ¥,

Areal sample  Pebble count Flexible combination
D Pai Pri Pri (fine) P (coarse)
(mm) (03] (03] (03] 02)
0.35 0.00 0.000
0.5 0.03 0.021
0.7 0.07 0.049
1.0 0.13 0.091
14 0.21 0.147
2.0 0.32 0.00 0.225
28 0.45 0.09 0.316
4.0 0.61 = paiow 0.26 = Ppiow 0.428 = 0.428 = psiow
5.6 0.83 = payp 0.46 =ppyp 0.583 = 0.583 =pxp
8.0 0.95 0.60 0.691
11.3 1.00 0.71 0.776
16.0 0.80 0.846
226 0.870 0.900
320 0.920 0.938
45.3 0.955 0.965
64.0 0.975 0.981
90.6 0.990 0.992
128.0 1.000 1.000

The percentile of the flexible combination at the upper border of
the similarity range at 5.6 mm is (Eq. 4.14):

0428 083

pf up — 0-61 = 0-583 or 58.3%.

For the particle-size class of D; = 2.8 mm, the adjusted fine part of
the size distribution has a percentile of prg = 0.45 - 0.43/0.26 =
0.691 or 69.1% (Eq. 4.11). For the particle size classof D; =8
mm, the adjusted coarse part of size distribution has a percentile of
prs = (1-0.60)/(1-0.26) - (0.43-1)+1 =0.691 or 69.1% (Eq. 4.13).

Flexible combinations were computed for three selected size ranges of similarity: 2.8 —4
mm (a), 4 — 5.6 mm (b), and 5.6 —8 mm (c) (Fig. 4.38). Computations of the flexible
combination vary only moderately between different selected ranges of similarity, if the
two original distributions (areal sample and pebble count) have only afew particle-size
classesin common, which isthe casein Fig. 4.38. However, the combined distribution
curves become more varied between different similarity ranges as the two original
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distributions share alarger range of common particle-size classes and span awider range
of particle sizes.

4.4.3 Adjusting frequency distributions

Fripp and Diplas (1993) present a method for combining two frequency distributions that
is computationally different from the flexible combination in Section 4.4.2, but yields the
same result. The combination method by Fripp and Diplas (1993) uses two original
percent frequency distributions (e.g., from an areal sample that has been converted to a
grid-by-number distribution beforehand and from a pebble count). The number-frequency
distributions of both samples are adjusted to create a new, combined frequency
distribution. An example computation is provided in Table 4.13.

Table 4.13: Combining frequency distributions of two samplesto yield a combined sample. The percent
frequency of the particle-size class 4 — 5.6 mm (bold print) is selected as the similar size class for both
samples (after Fripp and Diplas 1993)

Original Adjusted Combined
Areal sample Pebble count Pebble count Area sample + pebble count
D, Nosai 2 Nogaj Nospi 2 Nypi Npagji Nei Noeci 2 Nose
(mm) (%) (Z%) (%) (Z%) () () (%) (Z%)
1) 2 ©) 4) ©) (6) (7 ®) ©)
0.35 0.0 0.0 - - - 0.0 0.0 0.0
0.5 3.0 3.0 - - - 3.0 2.3 2.3
0.7 4.0 7.0 - - - 4.0 31 54
1.0 6.0 13.0 - - - 6.0 4.6 10.0
14 8.0 21.0 - - - 8.0 6.1 16.1
2.0 11.0 32.0 0.0 0.0 0.0 11.0 8.4 245
2.8 13.0 45.0 8.0 9.0 7.5 13.0 10.0 344
4.0 16.0 61.0 17.0 26.0 16.0 16.0 12.2 46.7
5.6 22.0 83.0 20.0 46.0 18.8 18.8 14.4 61.1
8.0 12.0 95.0 14.0 60.0 13.2 13.2 10.1 71.2
11.3 4.0 100.0 11.0 71.0 10.4 10.4 7.9 79.1
16.0 0.0 - 9.0 80.0 8.5 8.5 6.5 85.6
22.6 - - 7.0 87.0 6.6 6.6 5.0 90.6
32.0 - - 5.0 92.0 4.7 4.7 3.6 94.2
45.3 - - 35 95.5 3.3 3.3 25 96.8
64.0 - - 2.0 975 1.9 1.9 14 98.2
90.6 - - 15 99.0 14 14 11 99.3
128.0 - - 1.0 100.0 0.9 0.9 0.7 100.0
100.0 100.0 142.4 100.0

For all particle size classes D; (column 1 in Table 4.13) the percent frequency (by number)
islisted for the converted areal sample Ny (column 2) and the pebble count nep; (column
4). From the size classes D; present in both samples, one size class is selected for which
the percent frequencies are most similar for the areal sample ny,s and the pebble count nype
(“the common size class’). These were the frequencies of 16 and
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17% for the size class 4 — 5.6 mmin Table 4.13 (bold print in column 2 and 4). A scaling
factor F isthen computed that makes it possible to equate the percent frequencies of both
samples for the one selected (common) size classi so that

Noepi = Noeai + (F - Nogpi) (4.15)

Solving for F yields

_ Nogpi - Nogaj
F = —n%Pi (4.16)

F is expressed as a percentage Fo, and subtracted from the percent frequency of the
original pebble count n,; for all size classes below the size class selected as similar for
both samplesto yield npagji (column 6).

Npadj i = Nogpi = Fos (4.17)

The frequency of one size class, Nyyagj,4 iN this example, is now identical for the areal
sample and the adjusted pebble count. The adjusted pebble count frequencies npyg; i for all
size classes D; < 4 mm (shaded part of column 6) and the percent frequency of the areal
sample hy for al size classes D; > 4 mm (shaded part of column 2) are presented in
column 7 and summed. The sum of column 7 does not add to 100 and is readjusted to
100% by dividing each value in column 7 by the sum of column 7 (i.e., 142.4) and
multiplying by 100 (column 8). The cumulative frequency distribution in column 9 isthe
new particle-size distribution for the combined sample.

Histograms of the original areal sample and the pebble count are shownin Fig. 4.39. The
two samples have similar particle-size frequencies for three size classes: 4 — 5.6 mm, 5.6 —
8 mm, and 8 —11.3 mm (i.e., three “common size classes’). Using one of these three
particle-size frequencies at atime, three combined particle-size distributions were
computed and produced the three combined curvesin Fig. 4.40. Resultsvary slightly
between the three computations (see also Fig. 4.38). However, variability of the result
increases as the difference in (common) particle-size frequency for the area and the grid
sample increases. Thus, computations should be repeated using several similar percent
frequencies (i.e., common size classes), and the combined distribution that best fits the
study objective should be selected.
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Fig. 4.40: Cumulative frequency distributions of an areal sample and a pebble-count, and the three
combined samples obtained from using the percent frequencies of different particle-size classes.
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4.5 Recording field results

Sampling results need to be recorded in thefield. Either afield book or sampling forms
developed prior to the field work may be used for this purpose. Both methods have
advantages and disadvantages. Ready-made forms are useful when sampling yields
information that is similar for al sites. Sampling forms are also useful to maintain a
preset standard of datarecording if different people are involved in the field work. One of
the greatest advantages of using sampling formsis that the process of developing the
forms requires visualizing and anticipating the sampling process. This“homework” helps
to organize the field work as it prompts the form developer to consider all the information
to be recorded, the order of measurements, all the equipment needed, and other
information useful to record. Thus, developing sampling forms may be time well spent,
even if the field forms are ultimately not used.

The disadvantage is that forms used during field work get dirty, become illegible when
wet, and tend to get lost. Single forms are prone to being swept away by the current or the
wind, or to becoming buried in the equipment. A rain-proof field book used for one site
or for one study only tends to better “weather” the field season and is more suitable when
different kinds of observations are recorded. A compromise between afield book and
sampling formsisto print field forms on water-resistant paper, and assemble them with a
spiral binding, aplastic cover, and a hard back. Personal choice and the type of field
work ultimately determine whether to use afield book or field forms, or a combination of
both. Both the field book and sampling forms should be photocopied frequently between
days of field work, and copies should be stored in a safe place.
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5. Sample size

One of the most common objectives of bed-material sampling is the characterization of
the distribution of particle sizes present in agiven stream channel. Theideal way to
describe the particle-size distribution of a streambed would be to count and measure every
particle within the reach. Thisis essentially impossible, and therefore one must rely on
taking samples of the bed material and use the sampl e results to estimate the general
characteristics of the sampling area.

The question is, how many particles or how much sediment should be sampled? The
answer is a compromise between sampling precision and sampling effort. Asthe number
of particles collected increases, the precision with which the bed material can be described
increases aswell. The precision obtained in the sample must be sufficient to measure the
effects being investigated by the project goals (e.g., Isthere a significant increase or
decrease in streambed fines? Has the armor layer changed, etc.?). If the sampling
program is not sufficient to meet these goals, the validity of the field results must be called
into question. As the sample sizes collected increase, the costs and effort associated with
the field work also increase and will eventually become prohibitively large. Another
factor to consider is that the increased precision obtained by collecting ever larger sample
sizes does not follow alinear relationship. The benefit obtained from collecting an
additional 10 particlesis much greater when the existing sample sizeis 20 as opposed to
when the sample size is 200.

The characteristics of the bed material being sampled is also an important factor in
determining sample size. When thereislittle variability in the material, i.e., when the bed
iswell sorted , smaller samples will sufficeto precisely describe the bed. With greater
variability, i.e., poorer sorting, the sample sizes must be increased to obtain the same
precision. Similarly, asmaller sample size sufficesif the bed is homogeneous, which
means that the particle-size distribution is more or less the same throughout the sampling
area.

Because sampl e size determines both the cost and the benefits of field measurements,
careful attention should be paid to this aspect before going out into the field. The
minimum sample size necessary to ensure a specific sampling precision should be
calculated beforehand and then be evaluated for cost requirements. However, in order to
estimate the minimum sample size for some preset precision, one must have at least an
approximate estimation of the bed-material standard deviation or sorting —which in itself
requires sampling. This circularity may be resolved by performing a pilot data-collection
study or through estimation based on experience with streams that have bed-material
characteristics similar to the stream being studied.
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Various methods for computing a relationship between sample size and precision for bed-
material samples are described in the literature. The methods fall into three groups:

* Empirical recommendations,
*  Computations based on an assumed normal distribution, and
» Computations that do not assume any underlying distribution type.

Older literature on sediment sampling often has empirical recommendations of sample
size that are based on the Do particle size and developed for particular bed-material
properties. These recommendations usually do not assign a certain level of precisionto a
certain sample size and are not generally applicable. More recent literature bases sample-
Size computation on an assumed normal distribution of the bed-material particle size.
These procedures are generally applicable if the assumptions of a normal distribution
holds, but the descriptions can be highly technical and difficult to understand without
background knowledge of statistics. Other sample-size recommendations do not assume
an underlying distribution type and are generally applicable. This document compilesa
variety of sample-size computations, explains their application, and compares the results.
This chapter provides the user with background information that assistsin selecting a
sample-size procedure suitable for a specific study objective.

Methods used to compute minimum sample size are different for number-based sampling
(Section 4.11 and 4.1.2), areal sampling (Section 4.1.3), and volume-based sampling
(Section 4.2). For this reason, sample-size computations are discussed separately for each
sampling method.

5.1 Factors affecting sample size

The computation of sample size is affected by a variety of factors which include:

» Assumptions made about the underlying distribution type of the bed-material particle-
size (approximately normal, log-normal, or no assumptions are made regarding the
distribution type (Section 2.1.4.3)) and these assumptions determine which statistics
need to be used;

» Bed-material characteristics:
- standard deviation s of the particle-size distribution (typically estimated by the
Inman sorting coefficient s or by the moment method Sgq),
- heterogeneity of bed material within the reach (variability among samples),
- limited parent population size (N) in relation to sample size (n) in asmall sampling
areq,

» Acceptable error of measurements which may relate to:

- absolute, percentage, or standard error,
- particlesizesin gor mm units,
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- the distribution mean or any percentiles (e.g., Ds, Dso, or Dgs), and
- be affected by the number of operatorsinvolved;

» Acceptable chance that the computed result is wrong
- expressed by a predetermined confidence level a;

» Bias(systematic deviation of sampling results from population characteristics) due to:
- unrepresentative particle selection (operator bias),
- unrepresentative sampling from heterogeneous deposits (sampling bias),
- unrepresentative presence of particles from the largest size class (statistical bias).

Assumptions made about the underlying distribution type

Assumptions made regarding the population distribution type of the bed material sampled
determine the kind of statistics used for sample-size computations. Traditionally, itis
assumed that unimodal, log-transformed bed-material particle-size distributions derived
from a sufficiently large sample size approach a normal distribution in ¢-units. Assuming
an approximately normal distribution has the advantage that commonly available sample-
Size statistics can be used which are based on normal distributions (Section 5.2.2). Bed-
material samples, however, rarely have atrue normal or Gaussian distribution (Kothyari
1995). The user needs to evaluate whether the goodness-of-fit to a Gaussian distribution
is close enough to warrant the assumption of approximate normality (Section 2.1.4.3).
Church et al. (1987) and Rice and Church (1996b) cautioned that true Gaussian
distributions for log-transformed particle-size distributions are unlikely for gravel-bed
streams. The user could either use an empirical approach to determine a “sufficient”
sample size, or use a bootstrap (resampling) approach (Section 5.2.3.4) that provides a
relation between sample size and error. Sample size — error relations computed from a
bootstrap approach are independent of an underlying distribution type and may differ
substantialy from similar relations computed using Gaussian-based statistics.

Bed-material characteristics

For a specified accuracy and precision, sample size n should increase as the variability of
the parent population increases, i.e., as the sorting of the bed material becomes poorer or
the standard deviation becomeslarger. If the bed-material composition is spatially
heterogeneous and varies markedly between different locations of the sampling reach,
samples collected from the reaches are likely to be highly variable aswell. Thelarge
standard deviation between individual samples necessitates collecting a large number of
samples for adesired accuracy and precision. Small mountain streams with large particles
might have only alimited number of particles available for sampling. In this situation, the
population size N is limited in relation to sample sizen. Thislimitation takes a statistical
effect as N becomes | ess than about 100 times the necessary number of particles n and
causes a decrease in the sample size necessary for a specific precision. Bed-material
characteristics further affect the relationship between sample size and accuracy when
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operators tend to favor mid-size particles while neglecting fines and large cobblesin
poorly sorted bed material.

Accuracy and precision

Usually when samples are taken, the user wants to know the accuracy and precision of a
sample. Accuracy refersthe size of the deviations from the true value. The accuracy of
bed-material sampling may never be known because the true distribution of bed-material
particlesin the reach could only be determined by collecting every particle in the reach.
Using the example of target practice (Fig. 5.1), with the target being the representative
description of the particle-size distribution of a deposit, accuracy is the closeness of the
shots to the target center (Fig. 5.1 d). Precision refersto the size of deviations from the
mean value obtained by repeated applications of the sampling procedure, i.e., the ability to
repeatedly hit the same area (hopefully the center) of the target (Fig. 5.1c and d).

a. * b.
High bias + low precision = low accuracy Low bias + low precision = low accuracy
C. d.

High bias + high precision = low accuracy  Low bias + high precision = high accuracy

Fig. 5.1: Patterns of shots at atarget. (Redrawn from Gilbert (1987), by permission of John Wiley and
Sons, Ltd.).
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Precision describes how dispersed or tightly bunched the shots are (Fig. 5.1 aand b) and
indicates the inter-sample variability (i.e., standard deviation between samples). Precision
is used to quantify how many repeated samples are needed to arrive at a stable sampling
result. Accuracy and precision are interrelated. Samples of low precision also have alow
accuracy (Fig. 5.1 aand b). Samples of high precision are not necessarily accurate if all
samples are off set from the true result by some constant amount, i.e., by bias. Precise
samples can only be accurate in the absence of bias (Fig. 5.1 d).

Bias

Biasisthe systematic deviation of a sampling result from the true population characteristics
(Fig. 5.1 aand c). Bias can stem from avariety of sources. Operator bias results when the
operator selects mid-sized, “handy” particles and excludes “inconveniently” small, or large
particles, or particles form poorly accessible streambed locations. Operator bias can be
ameliorated by training and using an appropriate sampling methodology (Sections 4.1.1.3 —
4.1.1.6, 5.2.2.8), but since it cannot be eliminated, operator bias increases with the number
of operators and with sample size. Satistical biasis caused by sampling too few particles
from the largest size class and is ameliorated by alarge sample size (Sections 5.4.1.1,
5.4.1.3,5.4.1.4). Sampling bias means to sample particle distributions not representative of
the parent distribution in the reach and may result from sampling spatially heterogeneous
beds in an unrepresentative way. This can be avoided by using spatially segregated
sampling schemes (Sections 6.3 and 6.5).

5.2 Pebble counts: number-based sample-size recommendations

5.2.1 General form of number-based sample-size equations

For approximately Gaussian shaped particle-size distributions that are not very skewed,
mean and median are similar. In this case, a one-step procedure can be applied to estimate
the sample size necessary to obtain a desired precision of the sample mean particle size ¢,
or Dy,. The general form of a sample-size equation is:

= g%ﬁ (5.1)

nisthe sample size, i.e., the number of particles to be sampled, t is a statistical numerical
value, o isthe population standard deviation, and e is the acceptable error around the
mean. These termswill be described in more detail.

Standard deviation
The population standard deviation o describes how wide the range of valuesiswithin the
population, specifically the range of values comprised within the central 68% of all data
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(Section 2.1.5.4). However, the population standard deviation is rarely known, and must
therefore be substituted by an estimate of standard deviation that is derived from the
sample. ¢ may be estimated from the sample standard deviation s = \/? where s isthe
sample variance. The sample standard deviation sis computed from the absolute or
percent frequencies of the particle number frequency-distribution

S:—\/? :/\/ nfll:il N (%I - %)2 (See Eq. 256)

where n isthe total number of particles (or 100 %), k is the number of size classes, n; is
the number of particles per size class (or the percentage), @ isthe center of classin ¢
units of theith size class, and @, is the arithmetic mean particle sizein @-units. This
computation of standard deviation is also called the “second moment” method. The
expression becomes complicated for grouped data such as particle-size distributions (see
Eg. 2.58) and is therefore commonly substituted by the Inman sorting coefficient s that
describes the range of particle sizes contained within the central 68% of al data (Eq. 2.46,
Section 2.1.5.4).

s = L@“—Z@I (see Eq. 2.46)

Numerical values of standard deviation and the Inman sorting coefficient are identical for
true Gaussian distributions, but deviate somewhat if the particle-size distribution is not
exactly normal (see Table 2.14).

The sample standard deviation or the Inman sorting coefficient is usually not known
before the sampling project starts, and need to be obtained from apilot study. A
preliminary value of sample size is then computed for a preset precision using the
estimated value of s or 5 and a sample of the computed size is collected. The standard
deviation sor 5 is computed for the collected sample, and sample sizeisrecalculated. If
sampl e sizes based on the pilot study and on the actual sample are different, the process of
computing and comparing sample-size requirements needs to be repeated until the
difference in required and collected sample sizeisinsignificant.

Error

The error around the mean can be expressed in absolute or in percentage terms. The user
may specify an acceptable error for the sample mean, e.g., £0.15 garound the mean in ¢
units (@y) or £10% around the mean in mm (D,,), and compute the sample size necessary
to attain thisgoal. Similarly, the error associated with a given sample size may be
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calculated by solving sample-size equations for the error e. The inverse square relation
between n and e is such that afourfold increase in sample size reduces the error by half
whereas alowing for twice the error reduces the sample size by afactor of 4. Other
possibilities to express sampling errors include standard errors and errors around
percentilesin terms of mm, ¢, % or in terms of a percentile range (Section 5.2.3).

Sample statistics
Thetermtin Eq. 5.1 isastatistical numerical value known as Student’st. For bed-
material sampling studies, Student’st is preferred over other statistics because the

population gis usually not known and approximated by s, the sample standard deviation.
Thet-variate cuts off (100 a/2)% of the upper tail of at-distribution with n-1 degrees of

freedom. The numerical value of Student’ st depends on two parameters: confidence

level: and sample size. The confidence level a describes the certainty (or the percent of
all cases) in which a specified precision will be obtained by sampling the required sample
size. A vauetypicaly chosenis a = 0.05 which pertains to a 95% confidence level which

means that the particle size of interest will be within a predetermined limit in 95% of al
cases. Table 5.1 showsthe relation between percent confidence, a-levels, and the
resulting value for ty.4/2, n.1 for large n. Note that for large n, values of ty.g2 n.1 are
identical

Table 5.1: Relation between precision (expressed in terms of confidence levels, or percent
chance that error is exceeded), the corresponding a-levels, and values of ty g, or Z;. o, for

n — oo,
% confidence % chance a-level Percentile of Distance betw. median
that error is that error is normal and percentilein terms
not exceeded exceeded distribution of standard deviation
1-a (%) a% a 1-a/2 t1-0/2, 1 00 OF Za-gri2
0 100 1.0 0.5 0.0

30 70 0.7 0.65 0.385

50 50 0.5 0.75 0.675

68.2 318 0.318 0.841 1.000

80 20 0.20 0.90 1.280

85 15 0.15 0.925 1.440

90 10 0.1 0.95 1.645

91 9 0.09 0.955 1.695

92 8 0.08 0.96 1.750

93 7 0.07 0.965 1.810

94 6 0.06 0.97 1.880

95 5 0.05 0.975 1.960

98 2 0.02 0.99 2.327

99 1 0.01 0.995 2.576

99.5 0.5 0.005 0.9975 2.810

99.9 0.1 0.001 0.9995 3.270

99.96 0.04 0.0004 0.9998 3.490

99.99 0.01 0.0001 0.99995 3.603
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to the values of Z;.4» which isthe standard normal deviate that cuts off (100 a/2)% of the
upper tail of a standard normal distribution. Values of Z;.,» are used instead of t1.4/2 -1 if
the population standard deviation o is known and nislarger than 100.

For a specified confidence level, the relationship between t and sample size nisnot linear.
For sample size larger than 200, t takes a constant value of 1.96 for a 95% confidence

level (for a = 0.05, t1-g/2 n-1= tog7s, n1 = 1.96). But for small sample sizes, t changes
significantly with sasmple size. For asample size of 5 which alows n-1 = 4 degrees of
freedom, to 75 n-1 = 2.776, and increasesto 12.7 for asample size of 2. Table 5.2 provides
t-values for various degrees of freedom which are equal to n-1, and a 95% confidence

level for which ty.q2 = tog7s. Vauesfor t for other confidence levels and samples sizes can
be obtained from statistical tables available in standard statistics books (e.g., Gilbert
1987).

Table5.2: Vauesfor Student’st for various degrees of freedom (n-1) and a 95% confidence level (a =
0.05) with ty.4 = togrs

1 R N1 tigona N1 tigmna N1 tigmna N1 tigmna
1 12.706 11 2.201 21 2.080 35 2.032 85 1.991
2 4.303 12 2.179 22 2.074 40 2.021 90 1.990
3 3.182 13 2.160 23 2.069 45 2.015 95 1.988
4 2.776 14 2.145 24 2.064 50 2.010 100 1.987
5 2571 15 2.131 25 2.060 55 2.005 105 1.985
6 2.447 16 2.120 26 2.056 60 2.000 110 1.983
7 2.365 17 2.110 27 2.052 65 1.998 115 1.981
8 2.306 18 2.101 28 2.048 70 1.996 120 1.980
9 2.262 19 2.093 29 2.045 75 1.995

10 2.226 20 2.086 30 2.042 80 1.993 [ 1.96

Sample size

The necessary sample size n may have to be computed iteratively if nis smaller than
approximately 200 because the value of t depends on sample size (Table 5.2). Thisis not
aconcern for pebble counts which comprise more than 200 particles. However, when
using the general sample-size equation Eqg. 5.1 to compute the number of subsamples
required for a specified precision (two-stage sampling, Section 5.2.3.1), n may be smaller
than 10, and t varies pronouncedly with nwhen nissmall (Table 5.1).

The calculated sample size refers to the confidence level specified by thet value. If at-
value for a 95% confidence level isused, i.e., ti-q/2, n-1= togrs, n-1, @aSample sizeis
computed for which there is a 95% chance that the absolute difference (positive or
negative) between the estimated sample mean and the true population mean is less than
the specified acceptable error.
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The computed sample size is usually rounded to the next higher integer value, because
sample sizes are whole numbers, not decimals. Either 7 or 8 samples are collected, but
not 7.3. Itisleft at the user’s discretion of whether a sample size of 13.1 isrounded to 13
or 14. Rounding is denoted by the symbol [Jin this document.

5.2.2 Prespecified error around the mean

The variablesin the right-hand term of the general sample-size equation (Eg. 5.1) can be
dlightly altered, so that Eq. 5.1 can be used to compute the sample size around the mean
for avariety of different applications. Sample errors around the mean may be specified as
absolute error eqm in @-units, as percent error eypm around the mean in mm, and as
percent error ey,gm around the mean in @-units (Sections 5.2.2.1 —5.2.2.3). The confidence
level may be changed, and consequently the numerical value of t. In al example
computations provided in this section, sample sizes are computed for a 95% confidence
level (a = 0.05), avalue that is commonly selected. However, some study objectives may
specify adifferent confidence level. A normal distribution of bed-material is assumed
when using Eqg. 5.1, but aslight variation of the error term makes it possible to use the
equation for logarithmically distributed samples (Section 5.2.2.4). Another assumption
for Eg. 5.1 isan unlimited supply of particlesto be sampled. Again, aslight modification
of Eq. 5.1 alowsthe user to compute sample size when the number of particles that may
be sampled islimited, for example, in asmall sampling area (Section 5.2.2.5). All
variations of EQ. 5.1 used in Section 5.2.2.1t0 5.2.2.5 arelisted in Table 5.5 in Section
5.2.2.6. Example computations are performed with all equations introduced in Sections
5.2.2.1 - 5.2.2.5 for the same particle-size distributions so that computed samples sizes
may be compared (Section 5.2.2.6).

5.2.2.1 Absolute error around the mean in @units

The sample size for a specified absolute error around the mean particle size of asamplein
terms of g-units (e.9., €:gm = 0.2 @-units) is computed from:

_ 1-a/2'n-1_
=z of 52)

n isthe sample size for which thereisasmall (e.g., 5%) chance only (a = 0.05) that the
absolute difference (positive or negative) between the estimated sample mean and the true
population mean is larger than or equal to the acceptable absolute error exgm.

Example 5.1:
Given isthe particle-size distribution from Table 2.3 and Fig. 2.12

in Section 2.1.4.1:
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Dgs =104 mm (s =-6.70 S = |- @ell2=194
Dsp= 32 mm P50 = -5.00
Dis= 7 mm Qs =-2.82
Dy =27.2 mm @n =-4.76

If the user has no idea about the approximate value of n, the t-
value for an indefinitely large samplesizen - o isused in afirst
trial. For a = 0.05, tog7s, -1 = 1.96, and sample size n for an
acceptable absolute error e = £0.2 @-units becomes:

2
9%
n= %1@ - 1.94@ = 361.5 1362,

If the acceptable error isincreased to e.qn = +0.5 ¢, n becomes 57.8,
rounded up to 58. In this case, at-value of 1.96 would not be
appropriate and computations need to be repeated with at-value for
n-1=>57, whichiscloseto 2.00 (Table 5.2). Using tyogrs n1 = 2.00,
n=60.2, and isrounded to 61. This computed nisamost similar to
the n for which the t-value was selected. Usually, about three
iterations are required to reach this convergence.

Eq. 5.2 indicates that a pebble count in a poorly sorted streambed (s = 2) requires almost
400 particles for a 95% certainty that the mean of the sample is by no more than 0.2 ¢
units different from the population mean. An error of £0.2 ¢ means that in 95% of all
samples, the sampled mean can be expected to be within the range of -4.56 to -4.96 ¢
(i.e., between 23.6 and 31.1 mm) of the true mean of -4.76 ¢( i.e., 27.2 mm).

Fig. 5.2 shows relations between sample size and the absolute error exqm in @units around
the mean using t-statistics and a 95% confidence level for samples with various sorting
coefficients. These curves may be used to estimate the number of particles required for a
desired precision in pebble counts in streams with different sorting coefficients. Sample
sizein Fig. 5.2 was calculated iteratively to account for the variation of ti./2 n-1 = to.975,n1
with n.

5.2.2.2 Percent error around the mean in mm

Eq. 5.2 can be adjusted to apply to particle sizesin mm (ISO 1992). In this case, sorting is
expressed as the logarithmic geometric standard deviation sy« (See Eq. 2.54, Sect.
2.1.5.4), and the error is expressed in terms of the log of the percentage error around the
Dminmm added to 1.

_H tigzn:
=gtiieny e 9

250



1000

100 ——

e

Samples size (n)

|
o
10 i 1

\\
|-
|

Population
approxi mately

: Sténdard
" deviation:

0.3 0.5

Absolute error around mean in @-units

Fig. 5.2: Relation between sample size n and absolute error e.,m around the mean in ¢@-units based on
Student’ s t-values for approximately normal distributed bed material for various sorting coefficients, and a
=0.05. Sample size n was computed iteratively to adjust for the variability of tygzs n.y With sample size.

A pilot study estimates Dgs = 104 mm, and D1g =7 mm. The
logarithmic geometric standard deviation (Sect. 2.1.5.4) is
Sysq = 0.5log (Dg4/D16) = 0.586.

The absolute error of £0.2 ¢ in EQ. 5.2 corresponds approximately
to a£13.9 % error around the Dy, of 27.2 mm (see below) which
was chosen as the tolerable error. Inlog units, an error of £13.9 %
is expressed aslog (1+0.139). niscomputed by solving the
equation:

1.96
n= 091139 0.586% =415.7 1416

Comparison of absolute error in gand percent error in mm

Sample-size computationsin gunits and in the corresponding units of mm are not truly
equivalent, because an error that is symmetrical around amean in gunitsis not
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symmetrical around the mean in mm, and vice versa. For example, an absolute error of
+0.2 @units around a mean particle size of @, =-5.0 gencompasses the range of -4.8 to -
5.2 ¢. Theequivalent rangein mm s 27.9 to 36.8. The percent difference between 27.9
mm and the mean particles size Dy, of 32 mmis(27.9 - 32) - 100/32 = -12.8%, whereas
the percent difference between 36.8 mm and the D, of 32 mmis (37.7 - 32) - 100/32
=15.0%. Thisasymmetry may be negligible for relatively small errors, but becomes quite
pronounced as the absolute error in @increases. An error of £1.0 @around a @y, of -5.0 @
(=percentage error of 20%) encompasses the size range of -4 to -6 @that is equivalent to
the range of 16 to 64 mm, and describes an error of -50 to +100% around the D, of 32
mm (see Fig. 5.9 in Section 5.2.3.4).

5.2.2.3 Percent error around the mean in @units

The percent error eygm around the mean in @-units is the absolute error divided by the
mean and computed from eyym = €xem/ @n. Sample size for a percent error ey,ym with a 5%
chance (a =0.05) that the difference between sample @, and population mean @y is
smaller than the prespecified percent error may be computed from

n= ﬁl—a/zn—l . iﬁ — ﬁ%ﬂ . Cvg (54)
€6gm @n ©6gm

Note that sample standard deviation (or sediment sorting) is divided by @, aswell. @y
defines the coefficient of variation CV, also termed the relative standard deviation. Using
the Inman sorting coefficient s to describe the standard deviation s, CV may be computed
from:

|@4 - ﬂGI
2 -
@n @n 2¢mn

Estimates of @4, @0, and @ may be obtained from a pilot study of a 100-particle pebble
count. Table 5.3 presents coefficients of variation (CV) for bed material of different
sorting coefficients and different mean particle sizes.

Example 5.3:
From Example 5.1, 5 istaken as 1.94, and sample @, is-4.76 @

An absolute error of £0.2 @-units (Example 5.1) becomes a percent
error eygm = £0.2/-4.76 = 0.042 or 4.2%. niscomputed from:

L9 1.94
N=19042 " -4.76

g = (46.67 - 0.408)° =361.7 1362
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The sample size calculated by EqQ. 5.4 is equal to the sample size
calculated by Eq. 5.2.

Table5.3: Valuesof CV for poorly sorted bed material with various
sorting coefficients and various mean particle sizes

Dn O Sorting coefficient 5

(mm) (@-units) 1.0 15 20
16 -4.0 0.25 0.38 0.50
22.6 -4.5 0.22 0.33 0.44
32 -5.0 0.20 0.30 0.40
45 -55 0.18 0.27 0.36
64 -6.0 0.17 0.25 0.33

5.2.2.4 Percent error in @and mm for approximate lognormal distributions

Although particle-size distributions in @ units tend to roughly approach normal
distributions, it is conceivable that a particular particle-size distribution might obtain a
better fit to alog-normal distribution than a normal distribution. In this case, Eq. 5.5 may
be used to estimate the sample size for a prespecified percent error around the mean
(Gilbert 1987).

2 2
_Uigoni- S

"= (et (55)

Example 5.4:
In accordance to Example 5.3, an absolute error of £0.2 @-units

around the mean of -4.76 @ becomes a percent error of 0.042 or 4.2
%. Sample sizeis computed from:

_1.96°- 1.94° 384. 376
N="n©042+1) = 0041

= 351.4 1352

A similar form of Equation 5.5 may be applied if particle sizesin mm units approached a
lognormal distribution. The graphic geometric standard deviation sy = (Dsa/D16)° is
used in this case and has the value of 3.85 for Dgy = 104, and D1 = 7 mm (EQ. 2.54 in
Section 2.1.5.4). A percentage error of 0.042 (4.2%) in terms of ¢@-units (see above) is
approximately similar to a percent error of 13.9% in mm-units for the particle-size
distribution in the example.
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2 2
_ t 1-a/2n-1 * Sgsg
In (e%pnit1)

(5.6)

Example 5.5:

_1.96°- 385" 3.84- 14.83
M="n(0139+1) = 0129

= 438.9 1439

5.2.2.5 Limited number of particles available for sampling (N # o)

When sampling small geomorphological units (e.g., bars and riffles), or sedimentary units
(areas of homogeneous bed-material composition) there may be a shortage of particles that
can be sampled. The number of particles present on the particular geomorphological or
sedimentary unit (the population size N) might not be much larger, or even smaller than
the sample size n computed with Egs. 5.2 - 5.6. In this case, sample size n needs to be
adjusted for limited population size N. Thisis accomplished by dividing the equation for
unlimited sample size by 1 + the quotient of the original sample-size equation and
population size N. Equations that include aterm for limited population size N provide
virtually the same results as equations for unlimited N, if N exceeds n by a factor of 1000
or more. If N =100 n, nisreduced by less than 1% compared to the n computed without
adjustment for N, and if N = 10 n, n reduces by 10%. Thus, as N decreases, sample size n
also decreases.

Absolute error around mean in @units
For a prespecified absolute error e.qm in @-units, and alimited number of particles N in the
target population available for sampling, n is computed from (Gilbert 1987)

(5.7)

Example 5.6:

A grid count isdone on asmall bar with an area A, =2 m [2.6 m
=5.2m% Almost al surface particles are within the size range of
35 - 45 mm. If the mean particle b-axis sizeis 45 mm, and
particles are mostly lipsoid (a-axis = 1.5 b-axis) and flat lying,
the area covered by one particle A, can be approximated by A,= 1t
(0.045/2 - 0.068/2) = 0.0024 m”. Thus, the number of surface
particles on this bar is estimated to be N = Ay/A, = 2164.
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96
- 2 194@ -
= . = 1+(361/2164
1+fE2. 1.94%/2164@ ( )

Equation 5.2 (for unlimited population size) produced a sample
size of 362. Because of the limited number of particlesin the
population, Eq. 5.7 calculates alower sample size of n=310. The
effect of population size N on sample size becomes negligible as N
exceeds 100 n (ca. 50,000), and nincreasesto 359. For the
example above, this occurs as the sampling area reaches 119 m?
(Table 5.4).

=309.4 [J310

Table5.4: Example of change in sample size n with a change in population size N.

N Sampling Area(m?)  Side length for square (m) n
100 0.24 0.5 78
500 12 11 210
1,000 24 15 265
5,000 12 35 337
10,000 24 5 349
50,000 119 11 359
100,000 238 15 360
500,000 1190 35 361

Percentage error around the mean in mm
If the adjustment for limited population size is applied to Eq. 5.3, the sample size required
for a specified percentage error around the Dy, (in mm) is computed from:

1-a/2;n-1 ° | 3
= QOQ (1+eyom)
1-a/2;n-1 ° |
1+ gog (1+9%Dm)§ IN

(5.8)

Percent error around the mean in @-units
Similar to Eq. 5.4, sample size for a specified percent error around the mean in alimited

population size and an approximately normal distribution of particle sizesin @-unitsis
estimated from:
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n= (5.9)

1- a/2 n- 1
e)/oqrn

1+

1- a/2 n- 1 g
e%)(ﬂ'n

Percent error around the mean in g@-units, approximate lognormal distribution assumed
Parallel to Eq. 5.5, sample size for a specified percent error around the mean of an
approximately lognormal distribution of particle sizesin ¢-units and alimited population
Sizeis obtained from:

1:21—67/2;n—1 ' 52

2
1 (@) + FE25 S

Percent error around the mean in mm, approximate lognormal distribution assumed
Asin Eg. 5.6, sample size for a specified percent error around the mean of an
approximately lognormal distribution of particle sizesin mm and alimited population size
is obtained from:

n= (5.10)

2
n= Coapny & P (5.11)
[In (eon+1)] + 5=

5.2.2.6 Comparison between sample-size equations for errors around the mean

Equations introduced in this section are summarized in Table 5.5. When applied to the
same particle-size distribution, all equations compute sample sizes between 352 to 439 for
an absolute error around the mean of £0.2 ¢, which is equivalent to a4.2 % error (around
the mean in ¢), and approximately equal to an error of +13.9 % around the mean in mm.
To compare the results of the five equations (5.2 to 5.6) over awide range of errors,
sample sizes were computed for errors between +0.1 and 1.0 ¢ and plotted in Fig. 5.3.
Egs. 5.2 (e:gm) and 5.3 (exem) Yield identical relations between sample size and error,
while sample size computed for a corresponding percent error in mm units, (€ypm) (EQ.
5.3) isdlightly higher. The sample size — error relations have a somewhat different shape
if the particle-size distribution is assumed to approach alognormal distribution instead of
anormal one.
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Table 5.5: Variations of the standard sample-size equation for computing absolute or percent errors around
the mean particle-sizein mm (D)) or @-units (@) for approximately normal and lognormal distributions, and
for unlimited and limited population particle numbers. Numbers in parentheses refer to equation numbersin

the document.
Particle Particle-size Error around Unlimited Limited
size distribution the mean population Size population Size
units type (N> 100 n) (N<100n)
2
: Ao
approx. - s ' gm
absolute .5.2 .5.7
¢ lognormal Uergn U (69 5.2) 1+ 03 SEZ/ND (- 5.7)
[T gm 0
Ot S mot o m)%z
approx. t - Syw [] g (1+ep
mm lognormal percent [fog (1+ evom) (] (eg. 5.3) o 5 (eg. 5.8)
1+ %9 (1+eypm) /Nﬁ
2
ﬁ gt s
approx. Ot- s [&yom @l
t .54 .5.9
Q@ normal percen @%m . (nnlj (eq ) 1+ @ t . iEIZ/N':' (eq )
D]:b%qm % EI
approx. 2. g2 2. g2
¢ lognormal percent n(1+e (eq.5.5) 7 57 (€4.5.10)
w5 5 e
approx. Sy - 2 Syet 511
mm lognormal percent In (1+eypm) (eq. 5.6) eq. 5.11)

7 72— (
In (Lreon) + B2 =1

H

t = values for Student’st stetistic, = ty.4; n-1; § = INMan’s sorting coefficient; sy« = geometric standard
deviation, square-root approach; e.,» = absolute error around the mean particle-size computed in @-units. eypm
= percent error around the mean particle-size; ey,m = percent error around the mean particle-size computed in

@-units.
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Fig. 5.3: Relation between sample size and error around the mean computed for the example particle-size
distribution (Dsp = 32 mm, s=1.94; Table 2.3, Fig, 2.12) with five sample-size equations (Eg. 5.2 — 5.6).
Equation numbers are indicated in brackets. The x-axis scale “ Absolute error around the mean in @-units’
refersto Egs. 5.2 and 5.4. The x-axis scale “Percent error around the mean in @-units’ refersto Eg. 5.5,
whereas the x-axis scale “ Average percent error around the mean in mm-units’ refersto Egs. 5.3 and 5.6.

5.2.2.7 Effect of bed-material sorting and error on sample size

The effects of bed-material sorting and acceptable error on sample-size requirements are
quite pronounced (Fig. 5.2). Bed-material sorting typically ranges between 0.5 (well
sorted lowland gravel-bed rivers) and 2.5 (poorly sorted headwater streams). Acceptable
errors typically range between 5 and 50%. The numerical value for Student’ st varies by
no more than 1% for sample sizes larger 25. Assume that awell sorted (s = 0.5) lowland
stream requires a sample size of 25 particles for an acceptable error around the mean.
Sample size for the same mean particle size and the same acceptable error increases by a
factor of 4 to 100 particlesin amoderate to poorly sorted streambed (s = 1), and again by
afactor of 4 to 400 particlesin apoorly to very poorly sorted (s = 2) mountain gravel-bed
stream. Similarly, for the same particle-size distribution, an increase of acceptable error
from 10, to 20, to 40% decreases the sample-size requirement from 400, to 100, to 25
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particles, respectively. Either adoubling in sorting, or halving of the acceptable error
leadsto afourfold increase in sample size. These numerical examples demonstrate that
statements of sample-size requirements cannot be taken out of context, but must be
evaluated in light of streambed sorting and the acceptable error.

5.2.2.8 Influence of multiple operators on sampling accuracy

None of the sample-size recommendations presented so far account for errorsintroduced
by operators. Operator errors may be attributed to two main factors: (1) incorrect
measurement of particle size (Section 2.1.3.6), and (2) biased particle selection among
operators (Section 4.1.1.3 —4.1.1.6). Both factors increase the variability of the sample
(i.e., standard deviation) and consequently increase the sample-size requirement or reduce
the accuracy. In contrast to the statistical error, the operator error becomes relatively more
important as sample size increases. Thisis because the statistical error decreases with
sample size, but operator error isthe same for all sample sizes (Hey and Thorne 1983).
Since sampling accuracy is comprised of the errors made by all operators involved,
sampling accuracy decreases as more operators are involved in the sampling.

Prompted by observed operator errors, Marcus et al. (1995) compared results of five
replicate samples each obtained by eight different operators at two different sites with five
replicate samples each from a single operator. They found that when multiple operators
took the samples, the standard deviation around a given particle size increased at arate
about twice as high with particle size than standard deviations of replicate samples from a
single operator (Fig. 5.4). For aparticle size of 2 mm, samples collected by the single
operator had a standard deviation of +2.6 mm. Thisvalue increased to +4.2 mm when the
replicate samples were collected by several operators. Likewise, particles with a250 mm
diameter had a standard deviation of 30 mm for asingle operator. The value nearly
doubled to £54 mm for multiple operators. This difference showsthat it is more
problematic to detect a change in bed-material size over time or between sites when
several operators are involved.

As the standard deviation for multiple-operator samples exceeds the standard deviation for
samples from a single operator (Marcus et a. 1995) by afactor of 1.8, the sample size
needs to be larger by afactor of 1.8% = 3.2 when multiple operators are employed.
Conseguently, using two or more operatorsin the belief that the larger sample will provide
amore accurate estimate of the population characteristics has the opposite effect: it
increases the sampl e size necessary for the sample level of accuracy. The maximum
benefit of intensive sampling is achieved only if all samples are collected by asingle
operator, unless operator bias can be substantially reduced (e.g., by training and using a
sampling frame), or be eliminated atogether.
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Fig. 5.4: Relation of mean size of 10 percentiles (Dpn, Ds, D19, D25, Dsg, D75, Dga, Dgo, Dgs, Dinax) tO
standard deviation for replicate samples collected by one (m , O) and by multiple observers (0, +). m and O
refer to one sampling site, (1 and + to another. (Redrawn from Marcus et a. (1995), by permission of the
American Geophysical Union).

5.2.2.9 Computation of sample size and error in the field

A study site may not be close to the office, and it might be inconvenient, if not unfeasible,
to return to the study site at alater time to augment a sample size that istoo small. Thus,
it isrecommended to compute the relation between sample size and error around the mean
inthefield. A laptop computer is needed and a prepared spreadsheet that computes a
cumulative frequency distribution, the @ and @4, the Inman sorting coefficient, and the
absolute error around the mean for a given sample size (Fig. 5.5). The spreadsheet should
likewise be set up to compute the sample standard deviation using the moment method
(Section 2.1.5.4).

As particles are added to the frequency distribution of the sample (n;), sample size, the
particle size of the percentiles of interest, the sorting coefficient, and the currently
obtained absolute error are automatically updated. Particles need to be added to the
sample until the computed error is less than a specified value, for example £0.2 ¢
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Table of t-values for

D Q n; Nos >Ny, 95% confidence interval
n-1 t-g2n1
2 -1.0 4 1.6 0.0 1 12.701
28| -15 b 2,0 1.6 e = -2.82 2 4.303
.. | @a=-6.70
128 | -70 | 3 |12 | 9965, 120 1.98
180 -7.5 1 0.4 |100.0 o 1.96
n=246( 100
tiaiomna - S 1.96 - 1.94
€sqm = l”/zz/lﬁ L = e =0.24 ¢

Fig. 5.5 Schematic presentation of a spreadsheet that could be used to compute the absolute error around
the mean particle size in g-unitsdirectly in thefield.

5.2.3 Specified error for all percentiles

The equations presented in the previous sections determine the sample size required for
estimating the error between the sample and the population mean. However, the user
might need to know the error associated with specific percentiles or with all percentiles of
the distribution. A two-step sampling procedure (Section 5.2.3.1) can be used to compute
the relation between sample size and precision for the median or percentiles close to the
median. A binomial approach (Section 5.2.3.2) can be used for specific percentiles (e.g.,
D10, Do), while a multinomial approach (Section 5.2.3.3) is used for computing the
precision of the entire distribution. A bootstrapping approach (Section 5.2.3.4) can be
used compute the precision around specified percentiles through a resampling procedure.

5.2.3.1 Two-stage sampling approach (ISO 1992)

Two-stage sampling is a procedure for bed-material sampling proposed by the
International Organization of Standards (ISO 1992). Thefirst step of the procedure
involves collecting several subsamples (e.g., 5) each of equal size (e.g., 50 or 100 particles
each). The median or, a percentile close to it, is computed for al subsamples aswell as
the standard deviation. In the second step a common sample-size equation (e.g., EQ. 5.21in
Section 5.2.2.1) is used to determine the number of subsamples needed to ensure that the
difference between the computed median particle-size and the popul ation median particle-
size does not exceed a specified error value. The total number of sampled particlesisthe
number of subsamples times the number of particles per subsample.

Computation for particle sizesin mm

Following the general steps previously described, a number of subsamples (g) are taken
from a homogeneous deposit, each sample containing n particles. For each of theq
subsamples, the particle size of the median is determined, either graphically from
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cumulative distribution curves, or by logarithmic interpolation between percentiles
(Section 2.1.4.2). 1SO (1992) proposes to compute the Dsp in units of mm (although ¢
units are preferable, see below). It is assumed that the q values of Ds, are approximately
normal distributed. The standard deviation ssp of the g values of Dsg is determined from:

q
S (Dso - Dsom)”

o= \/ = ] (5.12)

where Dsom IS the arithmetic mean particle size in mm of the Ds, obtained from the g
subsamples.

The number of subsamples g, each with the same sample size n, required for a 5% chance
(if a=0.05) that the absolute difference (positive or negative) between the sampled
median Dsp and the population median (i.e., the mean median established from the
subsamples) islarger or equal to the acceptable absolute error e.psp is computed using Eq.
5.13. The sample size qislikely to be rather small, perhaps less than 10. The value for t
varies markedly with sample size aslong as samples sizes are small. It istherefore
important to use an appropriate value for ti.qq1 (Table 5.2). The appropriate value for t
isfound by iteratively solving Eq. 5.13 until g equals the subsample size g.

2
_ %1—::/2-9-1
q= €pso S@ (5.13)

The total number of particlesto be sampled is the number of particlesin each subsample
n, multiplied by the number of q subsamples.

Example 5.7:
Eq. 5.13 is solved iteratively because the number of subsamplesis

typically smaller than 30 in bed-material samples, and the value
for ti.a;,q1 varies especialy for small sample sizes. Assume that
five subsamples had Dsy particle sizes of 45, 64, 76, 90, and 108
mm, with amean Dsy of 77 mm, and a standard deviation Sso of
24.1 mm. The tolerable absolute error around the Dsp is+10 mm.
In the absence of an a priori estimate of the appropriate sample
sizefor a+10 mm error, avaue of q = 20 subsamplesis selected
in the first trial of solving EQ. 5.13 (any other value would have
been fine, too) and yields a subsample size of q = 26. The
estimated subsample size (g«=20) and the computed subsample
Size (Qcomp=26) do not match after the first trial. The second trial uses
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the estimated subsample size g = 26 to estimate the appropriate
value of t. The newly computed subsample sizeisq=25. Using
the t-value for g = 25, the value computed for qis25. Equivalence
is reached between the estimated and computed g for a subsample
size of 25 after the third trail.

Trid Cest Q-l tl—ulz;q—l qcomp
1 20 19 2.093 25.4 026.
2 26 25 2.060 24.7025
3 25 24 2.064 24.7 025.

A total of 1,250 particles, i.e., 25 subsamples of 50 particles each,
have to be sampled to ensure that the Ds particle size iswithin
+10 mm of the true Ds, particle size.

Computationsin unitsof ¢

It is recommended to apply the two-stage approach to particle-sizesin units of ¢, rather
than to units of mm. Theterm Dsp in Egs. 5.12 and 5.13 is then substituted by values of
@o. The advantage of computationsin gunitsis that the mediansin gobtained from
several subsamples approximate a normal distribution better than median values Dspin
mm. For anormal distribution, sample means will be normally distributed for any
subsample size n, whereas for lognormal or skewed distributions, sample means attain a
normal distribution only for subsample sizes of 30 and larger (Triola 1995, p. 252-257).

Example 5.8:
The @ particle sizes of four subsamples of 50 particles each are

-5.2,-5.1,-5.0,and -4.8 @ The standard deviation s of the four
values of @0 is0.171 @ For an acceptable absolute error of + 0.2
¢ Eqg. 5.13yields

182
gq= Og : 0.171% =7.408
g = 8 subsamples (of 50 particles each, = 400 particles total) are
required for an acceptable error around the ¢ of £0.2 @-units.

The two-step sampling method is most suitable when estimating the required sample size
for aspecified error around the median in the field. For sample sizes of 100 or 50, the
median particle size can be quickly calculated on paper. Sample standard deviationisa
preprogrammed function of many scientific calculators. Prepared forms or spreadsheets
may be hel pful when computing the sample size necessary for a specified error in the field.
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5.2.3.2 Binomial distribution approach (Fripp and Diplas 1993)

The one-step methods compute the absolute error in mm or ¢@-units, or the percentage error
around the mean, whereas the two-step methods compute the absolute or percent error
around a specified percentile. For both proceduresit was assumed that either the entire
distribution approximated a normal distribution, or that the percentile values from the
various subsamples approached normal distributions. A binomial and a multinomial
approach (Section 5.2.3.3) can be used for computing the error around a given percentile
in terms of a percentilerange. For example, a percentile error of £10% means that the
particle size of the D5 may be within the particle size range of the Dgs and Dgs of the
population. Binomial and multinomial approaches assume no specific underlying
distribution type.

The binomial approach presented by Fripp and Diplas (1993) is based on the binomial
probabilities of the percent finer or percent coarser cumulative particle-size distribution
(i.e., the grain-size curve). The approach is used for computing the percentile error around
agiven percentile e.,. The computed sample size n ensures that the particle size of a
given percentile p iswithin a specified error range between two percentiles that are +
some percentage larger and smaller than the percentile p. nis calculated from:

_ (Zad)® p- (1-p)
n= y
€sp

(5.14)

Z isthe standard normal deviate that cuts off (100 a/2) % of the upper tail of a standard
normal distribution. Z-valuesfor various values of 1-a/2 can be obtained from statistical
tables provided in general statistics books. The value of Z;.,, for the commonly chosen
95% confidence interval with a = 0.05is 1.96 (see Table 5.1 for the relation between
confidence interval, a-levels, and corresponding values for Z;.412). pisused asadecimal
value of the percentile of interest (i.e., 0.5 for Ds), and the subscript , refers to a specified
percentile.

Example 5.9:
The sample size required to remain below a+ 10% percentile error

around the D1, i.€., the D46 particle size is to be within the range
of the sample Dg to Dg, is

2
= 1.96° O.l(E)Si2 (1-0.16) 516052
Eq. 5.14 can be solved for the error term and be used to compute
the error associated with a given sample size. The error around the
50" percentile of adistribution of particle-sizesin mm (Dso) for a
samplesizeof n=100is
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05- (1-05

=0.098 = 9.8%

An error of e., = 10% indicates that the particle size of the sample
Dso iswithin the Dgy and the D4 of the population distribution

The binomial approach calculates independent confidence intervals, one at atime, for each
particle size-class and can therefore not be used to represent the entire distribution. A
multinomial approach is needed to compute error bands around an entire particle-size
distribution.

5.2.3.3 Multinomial distribution approach (Petrie and Diplas 2000)

To overcome the limitations of a binomial approach, Petrie and Diplas (2000) presented a
multinomial approach which can be used for placing confidence intervals around all
particle-size classes in a cumulative frequency distribution curve of a pebble count
sample. The population cumulative frequency distribution (i.e., the percent finer or
percent coarser curve) can then be expected to be within the confidence interval in a
specified percentage of al cases (e.g., in 90% of all casesfor a 90% confidence interval).
Similar to abinomia approach, a multinomia approach does not assume a specific
underlying distribution type.

Relation between sample size and error
The number of particles n necessary to ensure that a percentile of interest p iswithin an
alowable confidence interval, ex, (i.e., percentile error) is computed from:

hoEotD): (1-ep D) Xua (5.15)
€ep
e:p isthe error in percentage points around the percentile p of a particle-size distribution.
Anerror of +10 percent around the Dsp (€50 = 0.1), for example, means that the particle
size of the sample Dsy may be within the D4 and the Dgg of the population distribution.
Xanc1 s the upper (1-a/k) - 100 percentage point of the chi-square distribution for one
degree of freedom and can be obtained from standard statistical tables. a isthe
confidence coefficient and k is the number of size classes of the particle-size distribution.
If table values are not available, the value for x*ic1 can be approximated using a
regression function that relates published values of x?ui1 to alk and yields (r? = 0.99):

Xoncr = - 1.435 (- 1.755 - In (a/K)) (5.16)
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Example 5.10:
Dsg isthe percentile of interest p. The tolerable error e, between

the sample estimate of D5 and the confidence interval around the
Dso is+10 percent, i.e., e;, = 0.1. Thismeans that the particle size
of the sample D5, could be within the particle size of the D4, and
the D¢ Of the population distribution. The desired confidence
level is a = 0.05, and the distribution has 10 size classes so that a/k
=0.005. Thetable value of Xza/k;l for one degree of freedom and
a/k = 0.005is7.88. Eq. 5.16 computes x4, as 7.86. Using the
value 7.88, the necessary sample sizeis (Eg. 5.15)

(01+05)- (1-0.1-05)- 7.88

_06- 04- 7.88
a 0.01

= 189.1 [1190.

The relation between sample size and percentile errors around the Ds is plotted in Fg. 5.6
for different numbers of particle size-classesk. A pebble count particle-size distribution
from a coarse gravel or cobble-bed stream typically has 15 to 20 size classes when particle
sizes are measured in 0.5 @intervals. According to Eqg. 5.15, a 100-particle sample with15
Size classes has a percentile error e.pso of +16% and can only ensure that the D5, particle

1000 ;
*UE) t Percent error around the Ds; percentile
8 900 -+ ‘ ‘ €ps0 = 0.05
& 1
() 800
Is) 1
2 700 -
CCL 600 7 e%p50 = 0.06
n I
500 |- - -
% 200 e%p50 = 0.07
E Sp50 = 0.08
2 300, i
; 200 + eypso = 0.10
£E2 100 * - €ps0 = 0.15
g 0 ! ‘ ‘ ‘ €ypso = 0.20
0 5 10 15 20

Number of size classes

Fig. 5.6: Sample size necessary for various percentage errors around the Ds, for different numbers of particle
size-classes k of a particle-size distribution.
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size iswithin the range of the population D34 to Dgg. A 400-particle sample reduces this
error to about + 7%, narrowing the range of the Dsg particle size of the sample to within a
range between the D43 and the Ds; population particle-size.

Confidence bands
Confidence bands can be plotted around a distribution using the equation

etp=\/X2 act: B (D) (5.17)

The absolute percentile error around a given percentile varies only with the number of size
classes k and the selected a-value, and is the same for any particle-size distribution as
long asthe values of a and k areidentical. Fig. 5.7 plots error bands for a 95% confidence

Particle sizes in @units
-1 2 -3 -4 -5 -6 -7 -8 -9

100

90
80
70
60
50

Percent finer

40
30
20
10

1 10 100 1000
Particle size (mm)

— sample —n=50 —=—n=100 —~=—n=400 —— n=1,000

Fig. 5.7: Error bands (e+p) for a 95% confidence level around the example particle-size distribution given in

Section 2.1.4.1 with 15 size classes (a/k = 0.05/15 = 0.0033; x%wi1 = 8.57). Vertical linesindicate particle
size classesin 1.0 @-units.
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level around the example particle-size distribution with 15 size classes presented in
Section 2.1.4.1. Error bands are not entirely symmetrical around the distribution. For the
example distribution used in Fig. 5.7, a sample size of n = 100 produces a percentile error
around the Dgp of £11.7%, i.€., the Dgp particle size could fall between the Dg, and the Deg
particle size. The percentile error around the D4¢ is £10.5%, meaning that the D1 particle
size may fall between the Ds 5 and the D 5 population particle size.

5.2.3.4 Bootstrap approach: no assumed distribution type (Rice and Church
1996b)

Rice and Church (1996b) proposed a computer sampling, or “bootstrap” method for
determining the sample size required for a prespecified error (standard error or error in @
units) around a given percentile. Bootstrapping determines the relation between error and
sample size from repetitive computer sampling of a parent distribution that constitutes
several thousands of actually measured bed-material particle b-axes. Bootstrapping, like
the binomial and multinomial approaches (Section 5.2.3.2 and 5.2.3.3), does not require
assumptions about the underlying parent distribution type. Computations are therefore
free of any error introduced by assuming an inappropriate underlying distribution type and
have the advantage that the computed sample-size requirements are tailored to a specific
bed-material composition found at a specific sampling site.

Computation of the bootstrap percentile standard error and the absolute percentile
precision

A measurement of 3,500 particle b-axes provides a data base that is sufficiently large to be
agood approximation of the population distributions. A large number of replicate
samplesr, e.g., r = 200 is drawn, each with the sample size n (sampling without
replacement for each individual sample). A particle-size frequency distribution and a
probability density function are constructed for each sample, and all percentiles of interest
are determined. Thus, for each sample size n there are 200 repeated samples for a given
bootstrap percentile Dy, (subscript , refers to bootstrap analyses), e.g., 200 values of D1ep
established for a sample size of n =50, 100, 500, etc. particles. The 200 replicates define
adistribution of Dpy =200 - Values with an arithmetic mean Dymp,r=200 and a standard
deviation Spyor=200. The standard deviation is the bootstrap percentile standard error s, for
the bootstrap percentile Dy, and is computed from (Rice and Church 1996b):

r

Dop - Dpmb)?
o =2 =] pt) (5.18)

where Dynp 1S the mean particle size of a specified percentile p in the bootstrap analysis.
The procedure is repeated for each percentile of interest for various sample sizes. Once
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the bootstrap standard error around a given percentile is known for various sample sizes, a
power regression function can be established between s, and sample sizen

Sb=ay- on° (5.19)

for each percentile. oisthe population bed-material standard deviation, a, and c are
coefficients obtained from the regression function.

For aknown distribution, a percentile standard error s, can be computed from:

_ANp- (1-p o
R N (5.20)

Theindex , refersto the specified percentile, p is the decimal value of the percentile (i.e.,
0.5 for Dsp), Y is the ordinate (y-value) of the population probability density function at
the given percentile. Yy, is not known if the distribution is not known, which makes it
impossible to use Eq. 5.20 without prior knowledge of the particle-size frequency
distribution. However, the first term of Eq. 5.20

Np- (I-p)_ . _

Yo = a, = constant (5.21)
assumes a constant value a, for each percentile for all sample sizes. The value a, can be
obtained from the least-square regression function of the relation between standard error
and sample size (EQ. 5.19) computed from the bootstrap results. Substituting the first
term of Eq. 5.20 with a, allows the computation of the standard error around a percentile
in an unknown distribution:

$=ap- j‘; (5.22)

In order to adjust computer sampling without replacement to a finite population from
which the samples are drawn, a correction factor needs to be applied to the percentile
standard error for a preset sample size n and population size N. This adjustment modifies
Eqg. 5.20to
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(5.23)

The standard percentile error corrected for finite population size is then computed from
_. . O N-n
=% n \YN-1

For a population sample size N of 100 n or more, the last term approaches 1 and can be
omitted.

(5.24)

Rice and Church (1996b) used the bootstrap approach to compute the relation between
sample size and error for various particle-size percentiles of agravel-bed river in Canada
(Mamquam River, Fig. 5.8). The particle-size distribution has a standard deviation of s=
1.17 pand is slightly skewed towards atail of fine particles (Skarew = 0.165 (EQ. 2.61);
skirq = 0.55 (Eq. 2.70)), a characteristic common to many gravel beds. The graphs
showing the relationship between sample size and standard error (Fig. 5.10 and 5.11) are
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Fig. 5.8: Particle-size distribution for a sample from a bar head in the Mamquam River, British Columbig;
mean annual flood is 152 m%s. Dgs = 111 mm (-6.8¢), Dgs = 79 mm (-6.29¢, Dgo = 38 mm

(-5.25¢), D1 = 15 mm (-3.91¢), and D5 = 7.5 mm (-2.91¢); 0= 1.17¢, skewness = 0.165 (Sky,rew) OF 0.55
(Skirg). According to a Kolmogorov-Smirnov test thereis aless than 1% chance (a = 0.01) that the

distribution is Gaussian. (Reprinted from Rice and Church (1996b), by permission of the Society for
Sedimentary Geology).
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discussed in the following section where the statistical (bootstrap) bootstrap error will be
compared to statistical errors computed by assuming an underlying distribution type. The
standard error computed from EqQ. 5.24 can be converted into an absolute error in @-units

by

__ G

= andviceversa e.p=S - taazn 5 25
t(l—a/z,n-l) T SP (1-a/2,n-1) ( )

S

Values of ty.ai2n-1) fOr various samples sizes are listed in Table 5.2. Table 5.6 presents
absolute errors in @ obtained by converting the bootstrap standard errors for sample sizes
50, 100, 400, and 1000 particles and a 95% confidence level. Error valuesin Table 5.6
may be used as a general estimate of absolute errors expectable around various percentiles
for bed material that is dightly skewed towards atail of fine particles and that has a
sorting coefficient closeto 1.17.

Table 5.6: Absolute error e, in + @-units for a 95% confidence level for percentile
estimates of the Mamquam River, with a distribution slightly skewed towards a tail of fine
particles and a standard deviation of s= 1.17 ¢ (from Rice and Church 1996b).

Sample size Ds Dis Dx Dsg Dz Dg D
50 0.89 0.61 0.52 0.37 0.33 0.35 0.44
100 0.62 0.40 0.36 0.26 0.23 0.25 0.30
400 0.30 0.21 0.19 0.12 0.11 0.11 0.12
1000 0.19 0.13 0.12 0.07 0.07 0.06 0.07

Note that the computed bootstrap error is purely statistical. 1t does not include errors
stemming from unrepresentative sampling by operators. The (statistical) bootstrap error
around the seven percentiles between Ds and Dgs for a sample size of n =400 (gray
shaded box in Table 5.6) isplotted in Fig. 4.2 (Section 4.1.1.3) and compared to the total
error observed in parallel pebble countsin mountain streams.

Standard and absolute errors in @-units can be converted into percent errors in mm-units.
Fig. 5.9 may be used for these conversions.

Percentile standard errors: bootstrap computation versus computations with assumed
distribution types
In symmetrical Gaussian distributions, standard percentile errors s, and absolute errorsin

@-units e. g, around percentiles have two properties: (1) they are paired such that errors
around the @s and the ¢, and errors around the g4 and @6, €tc. are equal; and (2) thetails
of the distribution (s and gs) have higher errors than the mean (¢o).
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Fig. 5.9: Conversion of absolute and standard errors, in @-unitsto percent error in mm-units. ty.g 1, OF Zs.
a2 Were approximated by the numerical value of 2.

The distribution of bed-material particle sizesin gravel-bed riversisrarely symmetrical,
not even when large sample sizes with smooth frequency distributions are collected in
large streams (Fig. 5.8). Coarse gravel beds are usually slightly skewed towards atail of
fines particles. Therefore, standard or absolute errors are usually not paired, nor isthe
standard error of any percentile identical to the one computed when an underlying
Gaussian distribution is assumed. In bed-material size distributions that are skewed
towards afinetail, the computed bootstrap error around the ¢, is smaller than the error
around the Dg4 computed from an assumed symmetrical normal distribution (Fig. 5.10).
By contrast, the bootstrap error around the @6 is larger than the error around the @6
computed for an assumed Gaussian distribution. The more asymmetrical the particle-size
population, the larger the difference between the error of paired percentiles, e.g., the D1
and Dgg.

Similarly, the more asymmetrical the particle-size population the larger the difference
between the standard or absolute errors for given percentiles obtained by bootstrapping
compared to those obtained by assuming an underlying Gaussian distribution.

Note however, that the absolute error e, obtained from the bootstrap approach for the

Dso particle size at the Mamqguam River is similar to the absolute error around the mean
e.qm computed by the general sample-size equation (Eq. 5.2).
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Fig. 5.10: Percentile standard errors for various sample sizes obtained from bootstrapping and from
assuming an unskewed Gaussian distribution. (Reprinted from Rice and Church (1996b), by permission of
the Saciety for Sedimentary Geology).

Rice and Church (1996b) compared not only the bootstrap percentile errors with the
percentile errors computed for an assumed normal distribution, but also for a skewed
normal distribution. The question was whether fitting a skewed normal distribution to the
parent population would remove the difference between the bootstrap error and the error
computed analytically for a best-fit skewed normal distribution. The assumption of a
skewed normal distribution did not achieve a better agreement between bootstrap error
and analytical error (Fig. 5.11). Particularly disconcerting was the unreliability of the
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Fig. 5.11: Percentile standard errors for variable sample size obtained from bootstrapping and from
assuming a skewed normal distribution. (Reprinted from Rice and Church (1996b), by permission of the
Society for Sedimentary Geology).

improvements: while errors around some percentiles were well predicted when assuming a
underlying skewed normal distribution, errors around other percentiles were greatly over-
or underpredicted (Fig. 5.11). The only percentile for which thereisrelatively little
difference between sample-size requirements from a bootstrap approach and those
computed from assuming an underlying symmetrical or skewed Gaussian distribution is
the ¢xo. Thissimilarity indicates that bootstrapping is not necessary if the percentilein
guestion is the Do, or if apilot study indicates that surface bed-materia sizes could be
approximated by a Gaussian distribution. If the distribution does not approach a normal
distribution, and the percentile of interest is a high or low percentile, then bootstrapping or
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amultinomial approach should be used. Alternatively, atwo-step approach for percentiles
in @-units may be used (Section 5.2.3.1). Bootstrapping becomes particularly useful for
skewed and bimodal distributions, since the latter has no formal sample-size criteria (Rice
and Church 1996b).

Software that includes bootstrapping procedures is commercially available, such asthe
program “Resampling Stats” from Resampling Stats Inc*. which has an add-in version for
the spreadsheet program Microsoft Excel.

Collecting the large sample necessary for bootstrapping is problematic in mountain
streams

A thorough bootstrapping analysis requires taking alarge field sample to characterize the
parent population. Rice and Church (1996b) used a sample of more than 3,500 particles.
Sample sizes that large may be possible to obtain only in the beds of large streams that
have large areas of homogeneous particle-size mixtures. Sampling several thousand
particlesis aproblem in mountain gravel bed-rivers. If, for example, astreamis 10 m
wide, and four particles are sampled per 1-m section along a transect using the sampling
frame (Section 4.1.1.6), 40 particles can be sampled per transect. Almost 90 transects
would have to be sampled to obtain 3,500 particles such asin the study by Rice and
Church (1996b). If transects were spaced at about 2 m intervals, ahomogeneous reach
almost 200 m long would have to be sampled. Homogeneity over a 200 m stream segment
could perhaps be expected in a plane-bed stream, but not in ariffle-pool stream that, if 10
m wide, has about 4 riffle-pool sequences over a 200 m distance. However, even though a
bootstrap approach may not be feasible in a mountain gravel-bed river, the knowledge
gained from the bootstrap study by Rice and Church (1996b) about percentile errorsin
skewed distributions as opposed to symmetrical ones is quite valuable and should be
considered when estimating errors around high or low percentiles in skewed distributions.

5.2.3.5 Summary: the relation between sample size and error

Beneficial effect of sampling tapers off for large sample sizes
Sampling precision increases as the reciprocal of the square root of sample sizen

(standard error s, = 1/\/|_1 ). Thus, sampling precision improves dramatically as n increases
at small values of n, but the improvement becomes insignificant for high values of n. For
the bed material of the Mamquam River with 0= 1.17 ¢, Rice and Church (1996b)
determined the cutoff point beyond which further sampling does not significantly improve
sampling precision is at a sample size of 400 particles.

Relation between sample size, sorting, and error
The relation between sample size, sorting, and error n = (t - s/e)? is such that halving the
acceptable error margin e, or doubling of bed-material sorting s leads to approximately a

! Resampling Stats, Inc., 612 N/ Jackson St., Arlington, VA 22101; Web-page: http://www.resample.com;
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fourfold increase in sample size n, and a doubling in sorting doubles the error for agiven
sample size (Section 5.2.2.7). The relation between sample size, sorting, and error around
themeanisvisiblein Fig. 5.2. A 400-particle surface sample in moderately-sorted bed
materia (s=1 ¢ yields an approximate absolute error of £ 0.1 garound the mean,
whereas sampling only 100 particles increases the absolute error margin to approximately
+0.2 ¢. In more poorly sorted bed material with s= 2 ¢ sampling 400 particles |eads to an
absolute error around the mean of +0.2 ¢, and 100 particles to an error of £0.4 @

Comparison: one-step and bootstrap approach

The relation between sample size, sorting, and error around the mean is similar to the
relation between sample size, sorting, and error around the D established by Rice and
Church (1996b) in a bootstrap approach. For the Mamquam River with a standard
deviation of 1.17 ¢, a sample size of 400 particles resulted in an absolute error around the
Dsp of £0.122 ¢ whereas an absolute error of £0.115 @ around the mean particle size ¢,
was computed for a 400-particle sample by the general sample size equation (Eq. 5.2).

For percentiles other than the Ds, results from the bootstrap approach and an assumed
normal distribution differ and the difference increases towards the tails of the distribution.
The bootstrap approach indicates that for distributions skewed towards atail of fine
particles, sample error is significantly lower for high percentiles than for low percentiles.
Conseguently, it takes a considerably larger sample size to accurately characterize low
percentiles (Ds, D16) than high percentiles (Dga, Dgs) in distributions skewed towards a
finetail. Percentiles between Dso and Dgs require nearly the same sample size for agiven
precision (Table 5.6 and Fig. 4.2 in Section 4.1.1.3).

The poor precision of low percentiles for a given sample size in distributions skewed
towards afinetail results from the relative scarcity of fine gravel particlesin coarse gravel
and cobble-bed streams. In a 100-particle pebble count from a coarse gravel bed, the
number of counts per size classtypically varies between 0 and 5 for each of the finest 5 or
8 size classes (excluding sand). However, each of the coarsest 4 or 5 size classes (except
the very largest size class) might have 10 or 20 counts. The addition of one more count in
any of the fine size classes cause more change in the percentile particle size of that size
class than the addition of one more count to a coarse size class that has already 10 or 20
counts. Thisresultsin more uncertainty in the quantification of the low percentiles.

Comparison: bootstrap and empirical results

Results from the bootstrap analysis compare well with results from empirical studies
conducted in mountain gravel-bed streams (Section 4.1.1.3, Fig. 4.2) with distributions
skewed towards fines and sorting coefficients of = 1.2 ¢. When a sampling frame (Section
4.1.1.6) was used to reduce operator bias in particle selection in pebble counts, repeated
pebble counts on rifflesin various streams had total absolute errorse,,, of +0.1to £0.15 ¢
around all percentiles between the Dsg and Dgs. This range of total absolute errorsis quite
similar to the bootstrap errors established for the dightly skewed distribution from the
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Mamguam River and suggests when sampling large gravel and cobbles, operator errors do
not significantly contribute to the total error.

The absolute error of £0.42 @obtained for the Ds particle size of pebble countsin mountain
streams exceeded the bootstrap error around the Ds of £0.30 ¢ The poor accuracy for
samples of small particlesin pebble countsis attributable to the (inconsistent) operator bias
against small particles and should be disconcerting for studies concerned with the amount
of surface fines. Sampling accuracy for small particles requires not only larger sample
sizes than are required for large percentiles, but requires sample sizes even larger than
predicted from appropriate sample-size statistics to account for operator bias against fines.

Comparison: One-step and bootstrap with multinomial approach

Fig. 5.7 illustrates error bands computed around the example distribution presented in
Section 2.1.4.1 (= 1.94 @, Skarew = 0.17, Skirq = 0.72) for various sample sizes using the
multinomial approach. An absolute error in mm around a given percentile can be obtained
from Fig. 5.7 as the horizontal distance between the error band and the sample distribution.
The absolute error around the Dsg is approximately +0.4 @units for a sample size of 400
and increases to nearly 0.8 @for a sample size of 100. Therefore, the absolute error
predicted for the Dso from the multinomial approach is approximately twice as large as the
absolute error around the mean computed from the one-step approach (Eg. 5.2).

The error bands computed with the multinomial approach for the skewed distribution
described in Section 2.1.4.1 indicate a larger absolute error for small percentiles than for
large percentiles. Thesefigures are similar to the bootstrap results for the skewed
distribution from the Mamguam River.

5.2.4 Detectability of change in percent fines (Bevenger and King 1995)

Natural or anthropogenic disturbances in the watershed or the riparian area may lead to
elevated amounts of fine sediment in a streambed. The amount of fine sediment that
impairs aguatic habitat depends on the species of concern, the benthic community, and
bed-material properties. Monitoring fine sediment can be used to observe and evaluate
the effects of change in the natural conditions of the watershed or in watershed
management.

Fine sediment supplied to a mountain gravel-bed stream accumulates primarily in the
interstitial spaces of the subsurface sediment and in backwater areas. Accumulations of
finesin the surface sediment of the general streambed are relatively scarce. Taking
volumetric samples of the subsurface istime and labor consuming, however. To ssimplify
and accel erate the sampling process, Bevenger and King (1995) proposed sampling and
analyzing the amount of surface finesin the bed using a (zigzag®) pebble-count procedure.

2 The operator walks a zigzag course from bank to bank picking pebbles from the streambed at intervals spaced about 7
feet apart, and covers about a hundred meters of stream section (Bevenger and King 1995), (Section 6.2.2.1). The 7-foot
interval was chosen to reduce serial correlation in the samples particles and more closely adhere to the statistical
independence assumptions of the analysis.
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The statistical error associated with small percentilesis usualy relatively large (Section
4.1.1.3). Bevenger and King (1995) therefore specified the sample size necessary for
detecting differences in the percent fines obtained from two pebble countsusinga 2 x 2
contingency table analysis. One of the pebble countsis carried out in areference reach,
which means before the reach was impaired or in an unimpaired reference reach that
serves as “background”. The second pebble count is performed in the study reach, which
means in the reach in which the percent fines may have changed over time. The sample
Size necessary to detect a change in the percent fines of the study reach depends on four
factors:

» Samplesize at the reference site
Sample size at the study site hasto be larger if the sample size a the reference site is
small, and can be smaller, if alarge sample was taken at the reference site.

» Percent of fines at the reference site
A larger sample must be taken at the study reach if the reference reach has ahigh
percentage of fines (i.e., sandy gravel-bed streams). A smaller sample can be taken
when the percent fines at the reference siteissmall (i.e., gravel beds with little sand).

» The minimum difference in the percent fines to be detected between the reference and
study site
Detecting a small difference in the percent fines between study and reference sites
requires alarger sample size than is needed to detect a larger change in the percent
fines.

» Acceptablerisk levelsin terms of Type | and Type |l error
Type | error isthe risk of falsely concluding a significant difference between the two
samplesand istypically set at a = 0.05. Typell error istherisk of falsely concluding
that thereis no difference and istypically set to S =4a =0.20. Typel and Typell
errors are inversely proportional for agiven sample size. That is, adecreasein one
necessarily resultsin an increase of the other. If the occurrence of adifferencein the
grain-size distribution is as important as the occurrence of no difference, then both a
and (3 are set to 0.05.

5.2.4.1 Sample-size determination from diagrams

The required sample size depends on combinations of the four factors mentioned above.
Thus, Bevenger and King (1995) provided multiple plots with several curves each (Figs.
5.12 and 5.13) to specify the sample size at the study site for different values of the four
factors. The following five steps are taken to determine sample size from the diagrams:

1. Determinetherisk levelsfor Typel and Type Il error and select the appropriate figure
(Fig. 5.12 or 5.13).
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2. Determine the percent fines at the reference site and select the appropriate plot from
Fig. 5.12 or 5.13. For 10% fines at the reference site (p; = 0.10), select the plot “10%
fines a reference site” in Fig. 5.12 or 5.13.

3. Determine the detrimental percent fines at the study site. For example, 19% fines at
the study site (ps = 0.19) may be athreshold value for impairing aquatic habitat. The
necessary minimum detectable difference between study and reference site must then
be ps- pr=0.19 - 0.1 = 0.09 or 9%.

4. Determine the sample size taken or to be taken at the reference site and select the
corresponding graph for 100, 150, 300, 450, or 600 particles on the diagram.

5. On the appropriate diagram in Figs. 5.12 or 5.13 locate a minimum detectable
difference of 0.09 on the vertical axis, and determine the sample size at the study-site
at the intersection of a minimum detectable difference of 0.09 with the respective
graph for reference-site sample size.

For example, the plot for 10% fines at the reference site in Fig. 5.12 indicates that a 300-
particle sample (stippled line) at the reference site requires another 160 particlesto be
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Fig. 5.12: Sample size necessary at the study site to detect a minimum difference in percent fines between
the study and the reference site ps - p; for various reference-site sample sizesand risk levels. Risk levelsfor
typel and typell errorsare set to o = 0.05 and 3= 0.20. (Reprinted from Bevenger and King (1995)).
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collected at the study site. A 600- particle sample at the reference site reduces the sample
Size at the study siteto 120. Likewise, if 150-particle had been sampled at the reference
site, alittle over 300 particles have to be sampled at the study site.

If the tolerable percent fines at the study site was 12% (ps = 0.12), and the reference site
had 5% fines, the required minimum percent difference that needs to be detectable
between study and reference siteisps - pr = 0.07. In this case, the plot for 5% fines at the
reference sitein Fig. 5.12 indicates that at 300-particle sample at the reference site
requires at least 170 particles to be sampled at the study site.

Fig. 5.13 isused if both the Typel and Type |l error are set to a confidence level of 95%
(aand B=0.05). If there are 10% fines at the reference site, and the tolerable percent
fines at the study site is 20%, the minimum difference to be detected isps - pr = 0.10. The
plot for 10% fines at the reference site in Fig. 5.13 indicates that about 290 particles need
to be sampled at the study site, if 300 particles had been sampled at the reference site.
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Fig. 5.13: Sample size necessary at the study site to detect a minimum difference in the percent fines
between the study and the reference site ps - p, for various reference-site sample sizes and risk levels. Risk
levelsfor Typel and Typell errorsare set to a = 0.05 and 8= 0.05. (Reprinted from Bevenger and King
(1995)).
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Thisyields atotal sampling effort of 590 particles. If 600 particles had been collected at
the reference site, 195 particles would have to be collected at the study site, and this
increases the total sample sizeto 795 particles. If 100 particles were sampled at the
reference site, an extrapolation of the graph for 100 particles would intersect the line for a
minimum detectable difference of 0.1 at more than 1,000 particles for the study site and
result in atotal sample size of more than 1,100. Little information about a changein the
percent finesis gained when small samples are collected both at the reference and the
study site. If 100 particles were sampled at each site, the minimum detectable difference
isonly 0.18. Given 9% fines at the reference site, a 100-particle pebble count can at best
detect a doubling of the percent fines at the study site (Potyondy and Hardy 1994; King
and Potyondy 1993).

The total sampling effort can be minimized if the same number of particles are sampled at
both sites. Table 5.7 indicates, for a and 8 = 0.05, that sampling 293 particles at both
sites results in the smallest total sample size (586 particles). In order to optimize the study
effort and to find the smallest total sample size that will detect a given difference pilot
studies should be conducted to estimate the percent fines at both the reference and the
study sites. The result can then be used for estimating the optimum sample size.

Table 5.7: Equal and unequal sample sizesfor p, = 0.10 and ps = 0.20, and preselected values
of a and S (from Bevenger and King 1995).

Equal sample Size Unequal sample Size
a a
0.01 0.05 0.10 0.01 0.05 0.10
B N, Ns NN Ny, Ns N ns n, N n, N
0.01 566 417 347 848 424 635 318 534 267
0.05 419 293 236 617 309 439 220 357 179
0.10 349 236 185 510 255 350 175 278 139
0.20 275 177 134 394 197 257 129 197 99

5.2.4.2 Sample-size computation

The statistical background for the procedure presented by Bevenger and King (1995) is
provided by Fleiss (1981). Sample size for atolerablerisk level isbased on the
acceptance or rejection of the null hypotheses that the difference between the proportion
of the percent fines at the reference site p; and the study site psis either O (no difference),
or >0 (i.e, thereisadifference). Minimum sample size ns for the pebble count at the
study site can be calculated from Equations 5.26 and 5.27 (Fleiss 1981). If sample size at
the reference site n; is negotiable, and if there is no reason for different sample sizes
between the two sites, an equal sample size should be selected for the reference and study
sites asit results in the smallest combined sample size ns + n,. The smallest sample size
for both the study and reference site can be computed from:
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Ns=74 EFM [1+ — Ips-prlﬁ (5.26)

with

0 Y 3
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(Ps - Pr)? (5.27)

where z, and z,.g refer to the ordinates of the standard normal distribution, and the
subscripts a and S refer to therisk levels of the error Typel and I1l. Commonly used
values for z, and z,.g are:

aorf : 0.01 0.05 0.10 0.20

Z (neg.values); z,.z (pos.values): (-) 2.327 (-) 1.645 (-) 1.282 (-) 0.842

Example 5.11:
If the reference site has 10% fines < 8 mm (pr = 0.10), and it is

desirable to detect an increase in the percent finesto 20% or more
at the study site (ps = 0.20), with acceptable risk levelsof a = 0.05
and 8= 0.20, sample size at the study site is computed from Eq.
5.26 and 5.27:

0.1+0.2
@1.645\/0.“ 0.2 @ > @ 0.842- 4/0.1- (1-0.1)+0.2- (1-0.2)@
(0.2 - 0.1)°

_(1645- \[03- 085 0842 01 09+02. 0.8)°
- 0.1°

. [r0.831-04217% _

and
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ne=39.2- (1++/1.255)% =177

Modified forms of Egs. 5.26 and 5.27 are used if the sample size for the reference and
study site are different; however, the ratio of sample size at the reference site and the study
site needs to be known prior to the computation. The reader is referred to the source
literature by Bevenger and King (1995) and Fleiss (1981) for this case.

5.2.4.3 Operator error in the percent fines adds to the statistical error

Statistical computations of sample size, including the computation of sample size by
(Bevenger and King 1995) refer to the statistical error associated with a certain sample.
Computation of sample size, including the computation of sample size by Bevenger and
King (1995) only refer to the sample size needed to avoid a statistical error. However,
the user must keep in mind that operators introduce further sampling errors that are not
included in the computed statistical sampling error but nevertheless add to it. Operators
commonly bias against fine particles (Section 4.1.1.3), because fine particles may be
partially hidden between large particles, and because large particles are more likely to be
touched and selected in a pebble count than fine particles. Fine particles also tend to
accumulate in locations of the streambed that are poorly accessible, such asin pools or
under overhanging branches near the banks. Inaccessibility makes fine particleslesslikely
to be included in a pebble count. Operator errors and bias against fines are not included in
a computed relation between sample size and statistically detectable error in the percent
fines. The actua minimum detectable error in the percent finesis therefore smaller than
computed from the statistical analysis. To account for this neglect, a sample size larger
than predicted is required to detect a given change in the percent fines. Operator bias
against fines aswell as the variability of sampling results between operators can be
reduced by using a sampling frame (Bunte and Abt 2001) (Section 4.1.1.6). Sampling the
streambed in a systematic pattern along even-spaced transects spanning the full bankfull
width of the stream further assists in reducing operator errors with respect to sampling
fines.

5.3 Areal sampling: area-based sample-size recommendations

In contrast to pebble counts or grid samples that collect a predetermined number of
particles from atransect or agrid, areal samples collect all surface particles contained in a
specified (small) sampling area (Section 4.1.3). Thus, sample size may be described in
terms of the size of the area that needs to be sampled. The size of the sampling area may
be based on geometrical consideration, such as a multiple of the area covered by the Dpax
particle size. Alternatively, atwo-stage sampling approach may be applied to specify the
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number of subsamples needed from a homogeneous deposit to attain a specified sampling
precision for the median particle size (Section 5.3.2). A multinomial approach may be
used to compute the percentile error for the entire distribution (Section 5.3.3)

5.3.1 Dnax and geometrical considerations

Diplas (1992a) and Diplas and Fripp (1992) suggested that an areal sample should cover a
sampling area equal to at least 100 times the area of the D particle size in order to
provide arelatively high precision for all percentiles. Fripp and Diplas (1993) increased
this sample-size recommendation to 400 time the area of the Dy particle. Thisincrease
ensured that the volume of the sample would satisfy De Vries (1970) “low precision”
criterion with arelative error of 10% (Sect. 5.4.1.1).

The area of oneindividual areal sampleis usually small (about 0.1 m?) and several
individual areal samples need to be combined for the total sample. Thetotal sampling
area A can be estimated from a multiple of the exposed area of the largest particle(s)

Aot = 400 Diray’ (5.28)

Example 5.12:
The Dnox particle size of adeposit is estimated at 40 mm, the

upper range of particle sizes suitable for adhesive sampling
(Section 4.1.3.2). If aspherical particle shape is assumed, the area
covered by an individual particle A, with a40 mm b-axis sizeis

Ay =TI- %ﬁ:n. %’m%ﬁzo.omzamz

If an ellipsoidal particle shape with the a-axis 1.5 times the b-axis
is assumed, the area covered by one particle increases to

Ap=Tr ﬁ‘“Tbﬁz . ﬁ)'% s 0.04 m%: 0.00189 m?

An intermediate particle area of 0.00160 m? is obtained if a square
particle shape is assumed with A, = b”. Using A, = b?, the total
sampling area Ay = 400 - 0.0016 m* = 0.64 m?, which is an area
of 0.8 by 0.8 m.

If one areal sample covers approximately 0.1 m?, Eq. 5.28 suggests that 6 — 7 of those
areal samples should be collected in order to sample an area of sufficient size and to gain
sufficient material for a particle-size analysis.
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5.3.2 Two-stage sampling: specified error around the median

SO (1992) proposes a two-stage approach for defining the minimum sampling area. 1SO
(1992) advises that the minimum sampling areafor each individual sample As must be
larger than 8 times the area of the D particle size in order to avoid bias towards the
largest particles. For a Dy particle size of 40 mm, each individual areal sample should
be at least 0.11 by 0.12 m = 0.013 m? in size.

Computation in mm units

A two-stage approach can be used to determine the relation between sample size and
absolute error around central percentiles of the distribution (Section 5.2.3.1). A number of
g areal subsamples are collected, and the median particle size is computed for each of the
g subsamples, either graphically from cumulative distribution curves, or by linear
interpolation between percentiles (Section 2.1.4.2). 1SO (1992) suggests using the median
particle size Dsp in units of mm, assuming that the q values of D5, are approximately
normally distributed. This guideline document recommend using the median particle size
@o in units of @ (see below).

The sample standard deviation s of the g values for Dy is determined from

i(Dso - Dsom)?
$= = o1 (5.29)

Dsom is the arithmetic mean particle size in mm of the Dsp values obtained from the g
samples. An appropriate value for ti.q/2,4.1 is Selected from Table 5.2. Eq. 5.30 can then
be used to calculate the number of subsamples q so that there is only a 5% chance (at a =
0.05) that the absolute difference (positive or negative) between the estimated val ues of
the percentile in question D5 and the true population Dsg is larger or equal to the
acceptable absolute error ewpso. The absolute error is the difference (in mm) between the
sample and the population Dsg. Note that Eq. 5.30 may have to be solved iteratively (see
Example 5.13)

q= Pléfsol : Ssog (5.30)

The total sampling areafor one complete areal sampleis At =As- Q.
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Example 5.13:
Drax IS estimated as 40 mm and Dsxg is the percentile of interest.

Sample area As required for avoiding bias against large particles in
asubsampleis8 - 0.04°m?=0.0128 m°. Five subsampleswere
collected with five closely-spaced values for Dsg of 22, 25, 27, 30,
and 32 mm. From Eg. 5.29, the sample standard deviation s for
the Dsp percentile is computed to be 3.96 mm. The acceptable
error around the Dsg particle sizeis5 mm.

Eg. 5.30 needs to be solved iteratively when t-statistics are used.
An arbitrary sample size of 10 subsamplesis selected in the first
trial of Eq. 5.30 and yields a sample size of 3.2. Estimated and
computed subsample size g do not yet correspond. After four
subsequent trails, correspondence is reached for a subsample size

of 5.
Trid Cest Q-l tl—ulz;q—l qcomp
1 10 9 2.262 3204
2 4 3 3.182 64 07
3 7 6 2447 3704
4 5 4 2.776 48 05

Taking 5 subsamples from atotal areaof At =5- 0.013m? =
0.065 m? (about 0.25 by 0.26 m) provides a 95% probability that
the sample Dgg size iswithin £ 5 mm of the population Dso. This
isasampling area about 10 times less than predicted from Eq.
5.28.

If the 5 subsamples were more different and had Dsg sizes of 14,
19, 27, 33 and 39 mm, and a standard deviation of 10.139, the
iterative solution of Eq. 5.30 yields (2.101 - 10.139/5)* = 18.15
whichisrounded up to 19. The total area covered by the
subsamplesis As= 19 - 0.013 m? = 0.247 m? (about 0.49 m by
0.50 m). Thetotal sampling areain this example is much larger
than in the previous exampl e because the spread (variance) of the
5 values of Dspis much larger. Nevertheless, the sampling area
computed from Egs. 5.29 and 5.30 is still less than half the total
sampling area computed from Eq. 5.28.

Note that the two-stage approach computes only the precision for the particular set of
subsamples used in the computation. The precision associated with agiven sample size
would have to be computed numerous times, each time with anewly collected set of
subsamples, in order to compute the mean precision associated with a specified subsample
sizein aspecified sampling area. Thistopic is discussed in more detail in Section 5.4.2.1.
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Computationsin unitsof ¢

It is recommended to apply the two-stage approach to median particle-sizesin units of ¢
rather than the median in mm, because values of ¢, from several subsamples approximate
anormal distribution better than the values of Dsg (Triola 1995; Section 5.2.3.1). Dspin
Eq. 5.29 is then substituted by values of @.

5.3.3 Multinominal approach

Sample sizes computed from simple geometric approximations such as sampling area A =
100 or 400 Dy’ (Eq. 5.28) yield relatively large sample sizes in order to provide a
relatively high precision for all percentiles. However, a concrete relation between sample
size and error around a given percentile and selected confidence level is not obtained from
Eq. 5.28. In order to specify arelation between sample size and error, Petrie and Diplas
(2000) suggest a multinomial approach to compute the size of the sampling area. The
multinomial approach is applied in two steps. The first step computes the number of
particles needed for a grid sample (Section 5.2.3.3). The second step converts this number
of particlesto the size of asampling area. A factor is needed for this conversion, and its
numerical value depends on the packing of surface particles and the proportion of surface
voids. For avoidless surface, the Kellerhals and Bray (1971) conversion coefficients
(Section 4.3.1), may be used. Other conversion factors may be needed for other surface
conditions (Sections 4.3.2 and 4.3.3). Thereader isreferred to the origina literature by
Petrie and Diplas (2000) for details.

287



5.4 Volumetric sampling: mass-based sample-size recommendations

Sample mass required for representative volumetric samples can be computed by three
methods:

* Asanempirical function of the Dy particle size,
* By computing the number of subsamples required (two-stage approach), and
» By analytica means based on an assumed underlying distribution type.

A large number of empirical equations exist in which sample massis expressed as a
function of the Dy particle size (Sect. 5.4.1). These equations are simple to apply, but
different equations predict greatly different sample sizes. Sample-mass recommendations
based on the D« particle size do not require assumptions about an underlying frequency
distribution type. Sample sizes predicted from empirical functions of Dnux are generally
large, but they do not provide information about the relationship between sample mass
and error. Therefore, the precision of a sample remains unknown.

If the precision of a sample needs to be known, sample-mass equations should be
employed that provide information on the relation between sample mass and precision.
One possibility is atwo-stage sampling approach in which a number of subsamplesis
collected (Section 5.4.2.1). Based on the central limit theorem, the precision of any
percentile® in adistribution can be computed for various samples sizes. However, the
precision obtained for a specific sample size, e.g., three subsamples, is not the same for
any set of three subsamples from a deposit because each subsample is (slightly) different.
Therefore, many sets of three subsamples would have to be collected to obtain the mean
precision for a subsample size of three. The requirement for collecting a specified number
of subsamples repeatedly can be bypassed by plotting the precision for various
(unrepeated) subsample sizes. The datawill scatter, but fitting a power- or exponential
function through data points provides a surrogate relation between sample size and
precision for a given percentile in a given deposit (Section 5.4.2.2).

A large physical sampling effort can be reduced by using a bootstrap procedure.
Bootstrapping is a technique that collects repeated samples (by computer) from a parent
population. The parent distribution might be generated by a computer based on
specifications of the actual deposits (standard deviation and mean) that are obtained from
apilot study and an assumed distribution type (Section 5.4.3). The computational effort
of bootstrapping is rather large and may require using a resampling program. The main
drawback is that the computer-generated sample cannot be a perfect surrogate for alarge
sample from adistinct parent distribution. Bootstrapping may also be applied to a parent
distribution of an actual bed-material sample (5.2.3.4) that is entered into the computer.
The sample needs to be (usually prohibitively) large in order to accurately describe the
parent population and all particles must be collected independently of each other.

3 Two-stage approach is better suited for central percentiles. Peripheral percentiles require a larger sample size to reach
normality.
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5.4.1 Sample mass as a function of largest particle size

Why use the Do particle size?

Sample-size statistics that assume an underlying normal distribution indicate that alarger
sample size is required to accurately describe the distribution tails than the central parts of
the distribution. Consequently, a sample size that is sufficiently large to describe the
distribution tails will also suffice to accurately describe the entire particle-size
distribution.

The coarse tails of bed-material samples from gravel- and cobble bed streams are
comprised of only afew large particles per size class which nevertheless contribute a
rather large proportion of the total sample weight. Presence or absence of one or afew
large particlesin the distribution tail influences not only the percentiles of the coarsetail,
but central and fine percentiles aswell. Therefore, a volumetric sample needs to be
sufficiently large so that coarse particles are representatively included in the sample.
Because representatively sampling the coarse tail ensures accuracy for the entire
distribution, sample mass is determined as a function of the D particle size. Because
particle massis afunction of the third power of particle size, sample-size equations for
volumetric samples are (usually) afunction of the third power of Dy, i.€., D

Defining the Do particle size

The Dy particle size used for determining the mass of volumetric samples does not
necessarily have to be the largest particle found in the sampling reach, but should be the
size of the largest particlesto be represented in the sample. The largest particle sizesto be
represented in a sample depend on the study objective. When determining the Ds, or
another percentile for computations of bedload transport ratesin a given streambed,
untransportably large particles, e.g., boulders: unearthed from glacial deposits, or supplied
from rock fall, should not be included in the sample. If the study objective isto compute
the stream roughness, untransportably large boulders should be included in the analysis.

The largest particle size of concern that should be representatively included in bed-
material samples for bedload studies is often the dominant, large particle size Dgom. In
mountain streams with occasional supply of non-fluvial supply of large particles, the
particle size of Dgom is roughly equivalent to the Dy particle size. Dyom IS @pproximately
the largest particle size transportable during frequently occurring large floods (e.g.,
bankfull flow or aflood with atwo-year recurrence interval). The size of Dgyom Can be
estimated from the mean b-axis size of about 30 large (except the very largest) particles
deposited on the upstream end of gravel bars or on other fresh depositional surfaces that
are not affected by backwater or wake hydraulics. Absence of alga cover and negligible
embeddedness may be interpreted as signs of recent transport. Those indicators can be
misleading and indicate particle sizes too large for Dgom, If the last flood greatly exceeded
the commonly largest bankfull or biennial flood and deposited either extraordinarily large
clasts, or buried the streambed with finer sediment. In this case, atractive force diagram
(Lane 1955; Leopold 1992, p. 194) may be used to estimate the size of Dgom for flow
properties of commonly occurring floods.
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In uncoupled streams, the D particle size may be transportable during the floods of
concern. Sample-mass. equations may then be based on the center of class of the largest
fluvially transported size class Dy, OF the Dgs particle size. Theterm Dy IS used asthe
largest transportable size class in the discussion of sample massin the following section,
and not as the absolute largest particle size found in areach.

5.4.1.1 Sample mass as cubic functions of Dmax

Several sample-mass recommendations are available that predict sample massas a
function of Dy, (€.9., 1SO (1977) following De Vries (1970), Neumann-Mahlkau 1967),
Church et a. (1987), Diplas (1992a), Diplas and Fripp (1992), Fripp and Diplas (1993).
However, these cubic sample-mass equations are based on different criteria which include:

» Effect that adding or omitting the largest particle(s) has on the total sample mass,

» Error acceptable for the particle size of alarge size fraction,

» Constant coefficient of variation for the sizes of individual particles within asize class
over neighboring large size classes,

* Number of particles that should be contained in the largest size class, and

» Feadhility of obtaining a statistically required sample volume.

The different criteria produce different cubic sample-mass equations. To facilitate a better
comparison of the numerical results, all cubic sample-mass equations are expressed in the
same form of

mg=a- Dmax3' Ps= b- Dmax3 (5.31)

where my is sample mass and usually expressed in units of kg unless otherwise specified.
a and b are coefficients, and ps is the particle density. The unit of the Do particle sizeis
in meters for the equationsin Section 5.4.1.1, however in Fig. 5.14, Dyex iSindicated in
units of mm for familiarity. For ssimplicity, al particles are assumed to be spheres or
ellipsoids®, and the term 776 is incorporated in the a coefficient. A particle density ps of
2,650 kg/m?® is assumed for particles and the numerical valueisincorporated into the b
coefficient. All cubic sample-mass equations are plotted in Fig. 5.14 (the numbers on
graphs refer to equation numbersin Section 5) and listed in Table 5.8. Sample masses
predicted by these equations for a specified Dy particle size range over three orders of
magnitude, i.e., the percentage weight of the D« particle size of total sample mass ranges
between roughly 0.01 and 10%.

% The volume of an ellipsoid with an axis ratio a:b:c of 3/2:1:2/3 is equal to the volume of a sphere with a diameter of 1.
See Eq. 5.64 in Section 5.4.5.
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Percent error in total sample massincurred by the largest particle

One of the criteria used to establish an appropriate sample mass is the amount of error
produced by the unrepresentative presence or absence of the largest particle in the total
sample mass. In small samples from poorly sorted deposits, the largest particle can
account for a substantial fraction of the total sample weight. The arbitrary presence or
absence of the largest particle thus substantially affects the weight of the total sample
mass. If the resulting error in sample massis not to exceed 1%, sample mass must be
larger than 100 times the mass of the D« particle. A regression function fitted to the
graph provided by Neumann-Mahlkau (1967) determined the relationship between sample
mass and D« particle size to be

ms = 138,000 Dy e (5.32)

where Dy, max 1S the nominal diameter (in m) of the D« particle size (Section 2.1.2), and m
issample mass (in kg). For spheres, or ellipsoidal particles with axesratios of a=3/2 b,

b = Dyax, and ¢ = 2/3 b, the particle weight of Dmax iS equal to the weight of a particle with
anominal diameter of Dyux (Dmymax). I the potential error introduced by the largest
particleis allowed to increase to 10% (i.e., the Dnux particle size is allowed to assume
10% of the total sample mass), the regression function becomes (same units as above)

mMs = 13,800 D max” (5.33)
Both functions are plotted in Fig. 5.14 and labeled 32 and 33.

Relative error
The sample-mass recommendation by De Vries (1970) is based on an analysis of the
relative error ey, of theith size fraction. The relation can be computed from:

D3. B- p
Spi- = Ipi- - ) (5.34)

where p; is the probability by mass of the ith size fraction and isaconstant. Laboratory
experiments using sand and small gravel < 14 mm estimated amean value of 3=0.8. De
Vries (1970) considered the Dg, as characteristic of the large particle-size fraction. Thus,
sample mass ms as a function of the Dg, particle size can be computed from:
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_Dg’- 08 ps
ms= e%piz_ o (5.35)

De Vries (1970) suggests setting p; = 10%. For arelative error ey of 1% (“high
precision”), the denominator in Eq. 5.35 is 10°. The sample size for various degrees of
precision is

Dg’- 08 ps  Dgd’- 08 ps
0.01°- 0.1 ~ 10°

=08 10°- Dg’- ps (5.36)

with unitsin meters and kg. The exponent x equals 5 for a“high” precision of 1%, 4 for a
“normal” precision of 3%, and 3 for a“low” precision of 10%.
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Fig. 5.14: Comparison of various sample-mass recommendations (kg) for gravel and cobble bed material
based on cubic functions of D, The numbers on the graphs refer to the equation numbersin Section 5.
The four lineslabeled 0.01, 0.1, 1 and 10 refer to the percent sample mass contained in the mass of the Dy
particle.
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The sample-mass recommendations by De Vries (1970) were devel oped for sand and fine
gravel. If De Vries recommendations are applied to medium and large gravel particles
and cobbles, the sample mass becomes very large. The International Organization of
Standardization (1SO 1977) adopted the De Vries (1970) sample-size recommendations.

In order to compare the sample-mass recommendations by De Vries (1970) and 1ISO
(1977) that use the Dg, particle size with those that are based on Dy, the
recommendations based on the Dg,4 needs to be modified. If the Dy particle sizeis
assumed to be equal to the Dy; 7, and the sample standard deviation is 1.0 ¢, then the Dg7 7
particle size is approximately 1.0¢-units larger than the Dg, (i.e., twice aslarge) (Fig. 2.19
in Section 2.1.5.4). The sample massrequired for a Dg, particle 8 mmin sizein the
original plot by De Vries (1970) is therefore assigned to a Dg7 7 Or Dy particle size of 16
mm in Fig. 5.14. The sample mass (kg) for high, normal, and low, precision
recommended by De Vries (1970) (Eg. 5.36) can then be expressed as cubic functions of
the Dgy 7 particle size (m)

ms = 26,500,000 Dg77°  for “high precision” (5.37)
ms = 2,650,000 Dg;;>  for “normal precision” (5.38)
ms = 265,000 Dg7.7°> for “low precision” (5.39)

Constant variability of particle sizes per size class over all size classes

Church et a. (1987) presented a sample-mass criterion that is independent of an assumed
underlying distribution type. Church et a. (1987) found that the coefficient of variation
CV of particle sizeswithin a0.5 ¢-size classis approximately 10% if the size class
contains more than 100 particles. To ensure a constant CV of 10% for all sizes classes
including the largest, Church et al. (1987) empirically determined that the mass of the
largest particle in the sample should not exceed 0.1% of the total sample mass.
Conseguently, the sample mass ms (kg) should be 1,000 times the mass of the D yax
particle size. Thisrecommendation can be mathematically expressed as

M.=1000g D’ Ps =524+ Dpa’- ps = 1,388,000 Dya’ (5.40)

with Direx in m, and a particle density ps of 2,650 kg/m? (see graph labeled 40 in Fig.
5.14). Similar to the “normal” precision criterion by De Vries (1970), Eq. 5.40 yields
unmanageably large sample masses when applied to particle sizes larger than 32 mm. For
coarse gravel with a Dy Of 32 to 128 mm, Church et al. (1987) therefore suggest aless
stringent criterion in which the mass of a Dy particle accounts for 1% of the total sample
mass. This can be expressed by:
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ms = 1oogDmax3- Os =524 Dma’- ps = 138,000 Dy (5.41)

Equation 5.41 (graph 41 in Fig. 5.14) isidentical to the sample-mass equation by
Neumann-Mahlkau (1967) for the 1% precision criterion (Eq. 5.33, graph 33 in Fig. 5.14).
As particle sizes exceed 128 mm, sample masses again become so large that Church et al.
(1987) lowered the criterion to Dyax = 5% of the total sample weight.

ms = 20% Diex - Ps =10.47 - Dmac - Ps = 27,751 Dy (5.42)

The three sample-mass criteria by Church et a. (1987) plot as parallel graphsin Fig. 5.14.
In order to obtain one function applicable to all particle sizes, the three functions can be
united by a staircase function which, in a second step, can be smoothed by a power
regression function that isfitted through the corner points of the staircase functions. This
procedure and the resulting sample-mass equation is discussed further under “ Canadian
standards’ in Section 5.4.1.2.

Volumetric considerations

Diplas (1992a) and Diplas and Fripp (1992) based their sample-mass recommendation for
volumetric samples on the following considerations: If 100 particles are sufficient for a
line or agrid sample, and if a particle with the diameter D occupies an area larger than D?,
then the minimum area for an areal sampleis Anin =100 - D2 For an entire particle-size
distribution, total sampling area could be defined as A = 100 Dy, |f the minimum
depth of avolumetric sample is set to 2 Doy (Sect. 4.2.2.2), sample mass m (kg) becomes

Ms = 200 Dimc - o= 460,000 Dy (5.43)

where Dy isin meters and py, is the sediment bulk density assumed to be 2,300 kg/m®
(Table 2.16 in Section 2.5). Subsequent computations of precision and sample size
prompted Fripp and Diplas (1993) to increase the minimum number of particlesfor a
pebble count to 200 - 400 particles. Total sample area A then increases to 200 or 400
Dmax (EQ. 5.28), with a sample mass of

ms = 400 t0 800 Dy - Po = 1,380,000 Dy (5.44)
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if amultiplier of 600 is selected. Note that sample-mass recommendationsin Eg. 5.44 are
nearly identical to those proposed by Church et al. (1987) in their 0.1% criterion (Eq. 5.40).

Sampling until 5 Do particles are contained in the sample

A simplefield criterion for estimating the necessary sample mass that does not require
monitoring sample weight is proposed by Ibbeken (1974). He suggests continuing to
sample until at least 5 particles of the Dy Size class are contained in the sample. This
approach implies that the spatial distribution of Dux particles within a sediment deposit is
truly random, and that there is no user bias towards or against sampling large clasts. In
order to compare Ibbeken's criterion with those discussed above, a percentage weight
needs to be assumed for Dy particlesin the total deposit. If the percentageis set to 1%,
and the Dpx particle-size class is 180 mm with an average D particle weight of 8 kg,
Ibbeken's sample-mass criterion yields5 - 8 kg - 100 =4,000 kg. In thissample of 4
metric tons, the mass of one D,y particle mpmax comprises 0.2% of the total sample
weight. Interms of the notations used above, |bbeken's sample-mass criterion can be
rewritten as.

Me=2000 - Momax = 2000 - =Dy’ - ps = 2775,073 Dira’ (5.45)
6

If it isassumed that Dy particles make up 5% of the deposit, Ibbeken's sample-mass
criterionyields5 - 8kg- 20 =800 kg and the mass of one D, particle mpmax would
comprise 1% of the total sample weight. Thisresult isidentical to the sample mass
criterionin Eq. 5.41.

5.4.1.2 National standards: non-cubic functions of Dmax particle size

It is conceptually evident that sample mass should increase as a cubic function of particle
size. Nevertheless, the resulting steep increase of sample mass with particle size leads to
large and often unmanageable sample sizes for cobble-sized bed material. Most national
standards therefore propose sample-mass recommendations that require arelatively high
sample mass for small Dy SiZes, but the increase of sample mass with particle size then
continues at alesser rate than it does with a cubic function. Regression functions fitted to
the relations between sample mass and particle size yield either power functions with
exponents between 1 and 1.5, or linear functions. Note that these relations are empirical
and units on both sides of the equations do not necessarily match.

British, German, and American table value standards

Some of the national sample-mass recommendations are provided as table values only.
Examples are the British BS 812, | standards (cited by Mosley and Tindale 1985), the
German recommendations (DVWK 1988), and the American ASTM D75-71 standards
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(cited by Mosley and Tindale (1985)). The British and German sample-mass
recommendations are limited to particle sizes smaller than 60 mm, whereas the American
ASTM D75-71 standards apply to particles smaller than 90 mm. For avisua comparison
of sample mass, tabulated values and computed sample mass are plotted in Fig. 5.15.
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Fig. 5.15: Empirical sample-mass recommendations for gravel and cobbles expressed as power and linear
functions of D, (combined from various sources). The four lines indicate the percentages of 0.01, 0.0, 1,
and 10 % of the total sample mass comprised in the mass of the D, particle size (see Fig. 5.14).

American standards
Sample mass (kg) recommended by the ASTM D75-71 standards for particles smaller
than 90 mm can be expressed by alinear regression equation

Ms = 2,069 Dyyex - 6.7 (5.46)

with Dyex expressed in units of m (Fig, 5.15). The American ASTM C136-71 standard
(cited by Church et a. 1987) has no restriction on particle size and determines sample
mass m (kg) as
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1.5
Ms = 2,596 D max (5-47)

where Dy, max (in M) isthe nominal diameter (Section 2.1.2) of the particles retained on the
largest sieve size (Fig. 5.15).

German standards

Sample-mass recommendations published by the Deutscher Verband fir Wasserbau und
Kulturtechnik (DVWK 1988) extend to particle sizes up to 60 mm and can be expressed
by a power regression function (with min kg, and Dpax in m; Fig. 5.15)

My = 712.4 Dy (5.48)

Swiss standards
The empirical Swiss recommendations for sample mass in gravel-bed rivers are based on
sample volume (V) (Anastasi 1984; Fehr 1987)

Vs = 2.5 Dyrax (5.49)

with Vin m® and Diex in m. The mass of sediment contained in this sample volume varies
with the bulk density p, which is affected by the sorting and packing of the particlesin the
sample. Bulk density for gravel deposits ranges between 1,700 and 2,600 kg/m* (Table
2.16 in Section 2.5). For comparison with other sample-mass equations, p, was set to
2,300 kg/m?*, avalue proposed for gravel-sand mixtures by Carling and Reader (1982).
Sample mass (m) in kg isthen

My=25Dmax: M = 5,750 Diax (5.50)

Canadian standards

Church et a. (1987) proposed using three sample-mass criteria depending on the Dy
particle size (Section 5.4.1.1). However, use of three criteria can lead to confusion in
samples-mass estimates. Sample-mass requirements for particles of 32 mmis 45 kg if the
0.1% criterion is applied (Eg. 5.40), whereas sample mass for 45 mm particlesisonly 13
kg, if aless stringent criterion of 1% is used (Eq. 5.41) (Fig. 5.14). The Canadian
standards described by Y uzyk (1986), Y uzyk and Winkler (1991), and Zrymiak (in press)
fitted a staircase function through the three graphs by Church et al. (1987) to unite the
three criteriain a monotonic function. Another possibility to unite the three sample-mass
criteriain one strictly monotonic function is to fit a power regression function through the
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corner points of the staircase function (Fig. 4.20 in Section 4.2.3.2), yielding the sample-
mass equation (r°=0.999):

My = 2,881.6 Dy - 47.56 (5.51)

with min kg, and Dyax in m. The adjusted sample-mass equation for Church et al. (1987)
falls midway between the range of the other non-cubic sample-mass equations (Fig. 5.15).

Summary

Sample-mass recommendations that are based on the size of the D« particle vary over
several orders of magnitude for a specified Dy particle size (Fig. 5.14. and 5.15). This
variability is shown in Table 5.8 that presents cubic and non-cubic regression equations
for sample-mass recommendations and compares sample-mass requirements for D
particle sizes of 16 and 180 mm.

None of these recommendations have been formally adopted as the standard for sampling
bed material in gravel-bed streamsin the United States. The empirical sample-mass
recommendations most frequently used and referenced are those by Church et al. (1987).
The adjusted and strict-monotonic sample-mass equation for Church et al. (1987)
describes the center of the range proposed by cubic and non-cubic sample-mass equations.

5.4.1.3 Error of the entire particle-size distribution due to the presence or
absence of particles from the largest size class

Presence or absence of large particles not only affects total sample mass, but also aters
the particle-size distribution in general. The presence of a statistically non-representative
large particleisless likely than an absence, but has a disproportionate effect on the
sampled particle-size distribution. The presence of an unrepresentative large D ax
particle, that comprises alarge percentage of the total sample mass, considerably coarsens
the entire particle-size distribution compared to a parent population in which large
particles are not overrepresented. This can beillustrated with Fig. 5.16, which is
described in adifferent context below. Assuming the heavy black linein Fig. 5.16
represents the parent particle-size distribution of the deposit, the line termed “ biased”
indicates a sample distribution in which the largest particle comprises 30% of the total
mass. Compared to the parent population, the Dsg particle size is more than doubled, and
the D5 size is even quadrupled in the sample in which large particles are overrepresented.

Chance absence of particles from the largest size class causes a sample particle-size
distribution that is finer than the parent population. This effect isless pronounced than a
chance overrepresentation, but it occurs statistically more often. The effect of chance
absence of the Do particle on the sample particle-size distribution is discussed in more
detail in Section 5.4.1.4.
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Table 5.8: Comparison of cubic and non-cubic regression functions for sample mass as a function of the
Dnax particle size (sample mass in kg and D, particles sizein m). Sample mass in parentheses indicates
that the Do particle size is beyond the intended range of the equation. See text for assumptions and units.

Regression Function ~ Author, Criterion Equation  Sample Mass (kg) for D,y Of:
Number 16 mm 180 mm
Cubic sample-mass equations:
Ms = 26,500,000 Dy De Vries (1970), 1SO (1977), high prec.. 5.37 108 (154,550)
Ms= 2,775,073 Dy’  Ibbeken (1974), 5 Dy particles 5.45 114 16,180
Ms= 2,650,000 Dyee  De Vries (1970), 1SO (1977), norm. prec. 5.38 10.9 (15,450)
ms= 1,388,000 Dy Church et al. (1987), Dy = 0.1% ms  5.40 5.7 8,090
ms= 1,380,000 Dyw  Fripp and Diplas (1993), 400 particles  5.44 5.7 8,050
mMs= 460,000 D, Diplasand Fripp (1992) , 100 particles  5.43 19 2,680
Ms= 265,000 Dyee De Vries (1970), 1SO (1977), low prec.  5.39 11 (1,550)
ms= 138,800 Dy’ Church et al. (1987), Dyx = 1% my 5.41 (0.60) 810
mMs= 138,000 Dy Neumann-Mahlkau (1967), my=100D, 5.32 0.57 805
Ms= 27,751 Dy’ Church et al. (1987), Dy = 5% My 5.42 (0.11) 160
ms = 13,800 Dy Neumann-Mahlkau (1967), ms =10 D, 5.33 0.06 80
Non-cubic sample-mass equations:
Ms= 5,750 Dyax Anastasi (1984); Fehr (1987) 5.50 (92) 1030
ms = 2,069 Dy - 6.7 ASTM D75-71 5.46 26 (370)
Ms= 2,882 Dy - 47.6 Church et al. (1987), adjusted 551 1.1 472
Ms= 2596 Dm'®>  ASTM C136-71 5.47 5.2 200
Ms=  7124Dpec®  DVWK (1988) 5.48 1.9 (61)

5.4.1.4 Sample-mass reduction: truncation and readjustment at the coarse end

All cubic, and even some of the non-cubic sample-mass equations recommend sample
masses ranging from several metric tons to several hundreds of metric tons for bed
material containing large cobbles and boulders. Such sample masses are not only
unmanageably large, but would severely disturb the streambed as a consequence of their

collection.
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Church et a. (1987) recommend truncating volumetric samplesin coarse beds and
excluding from the sample particles larger than 256 mm, which typically weigh more than
about 23 kg apiece. Particleslarger than 256 mm are difficult, if not unsafe, to pick up
for most persons and are therefore not likely to be representatively included in a
volumetric sample, anyway. However, the presence of particles larger than the largest
sampled size-class in the streambed should be recorded in the field notes. Any
inadvertently collected large particle may then be discarded and only sufficient sediment is
retained for an unbiased sample of the largest particle size present in the truncated sample.

The truncation and readjustment method of estimating the coarsest part of acumulative
frequency distribution is based on the assumption that the percent frequency of the largest
one or two particles size classesistypically smal in very large and representative samples
from coarse gravel-bed streams. To obtain a smooth shape of the upper end of the
cumulative distribution curve, the truncated sample needs to be extended to its relevant or
full (pre-truncation) particle-size spectrum. Thisis accomplished by assigning small
percentage frequencies to the truncated size classes (Fig. 5.16). The added percentages
decrease for consecutively larger particle sizes. Estimates for those small percentages can
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Fig. 5.16: Example of a biased sample from a deposit with a D Size class of 256 mm. The sample was
truncated by two size classes at 128 mm and then readjusted to its original D, particle-size class of 256
mm.
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be obtained by handfitting a smooth upper part of the cumulative distribution curve. The
total percent frequency needs to be reset to 100% to compute the new cumulative
frequency distribution.

If the assumption that large particles in unbiased samples account for only a small
percentage of the total distribution massisvalid for a given sampling situation, truncation
and readjustment can provide a more accurate approximation of the true bed-material size
distribution than in small samplesin which 20% or more of the sample weight isdueto a
single large particle, or in which the largest particles are not accounted for at all.

Truncation and readjustment is not applicable if there is reason to believe that the paucity
or abundance of large particlesin the sample is aresult of fluvial processes, for example, a
recent change in the local sediment budget. An abundance of large particlesin subsurface
sediment, or ascarcity of large particles in the surface sediment, may result from the

burial of aformer armor surface by alocal deposition of mid-sized particles.

5.4.2 Sample mass as a function of acceptable percentile errors

Sample-mass considerations in previous sections are primarily aimed at avoiding bias due
to the unrepresentative presence or absence of asingle large particle. The resulting
empirical sample mass equations do not provide information regarding sampling
precision. If arelationship between sample mass and sampling precision is needed, it may
be computed from a two-step approach. A two-step approach computes the number of
subsamples necessary for a specified sampling precision around the median particle size
based on the central limit theorem. The particle size of the means or medians (or of
percentiles close to the median) in subsamples are approximately normal distributed).
Sections 5.2.3.1 and 5.3.2 described two-stage sampling for pebble counts with number-
based sample-size statistics and for areal samples. Section 5.4.2.1 describes how atwo-
stage approach is used to estimate the precision of volumetric weight-based samples.

5.4.2.1 Two-stage sampling approach (ISO 1992)

Individual volumetric samples taken with one of the sampling devices described in
Section 4.2.3 are not likely to contain sufficient sediment for an acceptable level of
precision in asize-distribution analysis. Therefore, 1SO (1992) suggests collecting several
subsamples. The mass of the largest particle Diax (in m) per subsample should be less
than 3% of the subsample mass mg in order to avoid sample bias towards the larger
fraction. This criterion for subsample mass ms (in kg) can be expressed by the function:

n

5 Drac - Ps = 46,205 Dyyec (5.52)

M = 33.3

where ps is particle density of 2,650 kg/m°.
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Computation in units of mm

Similar to the two-stage sampling approaches proposed by 1SO (1992) for grid and areal
sampling (Sections 5.2.3.1 and 5.3.2), a number (q) of volumetric samples are collected
from a homogeneous deposit. For each individual sample, the particle size of the median
or apercentile close to it is computed, either graphically from cumulative distribution
curves or by logarithmic interpolation between percentiles (Section 2.1.4.2). 1SO (1992)
proposes to compute the median Dsg in units of mm. It is assumed that the g values of Dsg
are approximately normally distributed. This guideline document recommends
performing the computations in @-units (see below).

The sample standard deviation s, of the q values of Ds is determined from:

g 2
> (Dso - Dsom)
i=1

g-1

S50 = (5.53)

Dsom is the arithmetic mean particle size in mm of the median D5, obtained from the q
samples. Equation 5.53 for sample standard deviation is preprogrammed in most
scientific pocket calculators and spreadsheet programs. For two subsamples, S IS
computed by

Dy -Ds2
2

Ss0 = \/—

(5.54)

Eq. 5.55 can be used to determine the number of weight-based subsamples q required to
remain below a 5% chance (a = 0.05) that the absolute difference (positive or negative)
between the estimated values of the D5y and the true population Dsg is larger than or equal
to the acceptable absolute error e.psp . The absolute error is the difference (in mm)
between the D5 in the sample and in the population. Using an appropriate value for
Student’st from Table 5.2, the number of subsamplesqis

q= ﬁ%’;so L. %oﬁ (5.55)

Total sample mass my; is the mass contained in each subsample ms multiplied by the
number of q subsamples.
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Example 5.14.
The Dnox particle size of adeposit is estimated as 64 mm. Sample

size m for each subsampleis 12 kg according to Eq. 5.52. Five
subsamples were collected and have Ds particle sizes of 23, 29, 32,
38, and 44 mm. From Eq. 5.53, the standard deviation s, for the
Dsois8.1 mm. An absolute error of e.psg = 5 mm around the Dsg
particle size is considered acceptable. Eq. 5.55 needs to be solved
iteratively when t-statistics are used (see Table 5.2 in Section 5.2.1
for t-values). An arbitrary sample size of 20 subsamplesis selected
inthefirst trial of EQ. 5.55. The subsample size geg = 20 iS not
equal to the computed subsample size geomp = 12 after the first trial.

Trid Oest Q-l tl—ulz;q—l qcomp
1 20 19 2.093 115012
2 12 11 2.201 12.7013
3 13 12 2179 12.5013.

After the third trial, the subsample size ges for which the t-value
was selected has converged with the computed subsample Size geony
= 13. Thetotal sample mass of 13 subsamples of 12 kg each = 156
kg has a 95% probability that the sample Dsy Size is approximately
within £ 5 mm of the size of the population Dso.

Note that one physical sample, i.e., the amount of sediment that is collected by using a
sampling device once, might not have a sufficient mass for an unbiased representation of
large particles. For Dy particle sizes larger than 90 mm, the 3% criterion in Eq. 5.52
requires a subsample mass of 34 kg. Therefore, for large Dnux SiZes, it may be necessary
to combine several physical samplesinto one subsample in order to reduce bias incurred
by the statistically unrepresentative presence or absence of large particles. Combined
subsamples are then used for the two-stage sampling approach.

Computationsin unitsof ¢

It is recommended applying the two-stage approach to median particle sizesin units of ¢
rather than to units of mm. Values of ¢, from several subsamples are expected to
approximate a normal distribution better than the values of Dsg (in mm) and should
therefore be preferred over computations in units of mm (Triola 1995) (Section 5.2.3.1).
Dso in Egs. 5.53 and 5.54 is then substituted by values of @s.

Precision from two-stage approach is not general but refersto analyzed samples only
Each set of subsamples has a unique precision. For example, one set of three subsamples
may have three D5y particle sizes of 45, 50, and 55 mm, while another set of three
subsamples has the three D5y sizes of 43, 49, and 54 mm. Sample standard deviations will
be dlightly different for each set of subsamples, e.g., 5.0 in the first set of subsamples, and
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5.5in the second. Consequently, the computed sampling error (or precision) is different
aswell, yielding an absolute error of 12.4 mm around the Ds, for the first, and of 13.7 mm
for the second set of three subsamples.

The variability between individual subsamples increases due to bed-material heterogeneity
in the sampling area or due to operator errors. The mean precision for a specified number
of subsamples within a sampling area (e.g., three subsamples) is obtained if sets of three
subsamples are collected repeatedly and precision is computed for each set. The precision
isthen averaged over all subsets of three samples and the result is the mean precision
expected for a sample size of three. The same procedure is repeated for all sample sizes.
The resulting data provide a description of the relationship between sample size and
precision for a given percentile in agiven deposit. The precision of this relationship
increases with the number of subsamples over which precision is averaged for each
subsample size. However, the repeated computation of precision for alarge number of
samples of the same sample sizeis a (prohibitively) large sampling effort.

Sampling efforts can be reduced by two procedures. Oneis using aregression function to
determine the relationship between sample size and precision in a scatter plot. The second
is a computer re-sampling procedure from a parent distribution for which the measured
particle sizes are entered into a computer. Hogan et al. (1993) combined both procedures
and developed a computerized two-stage sampling methodol ogy (Section 5.4.2.2).

5.4.2.2 Computerized two-stage sampling (Hogan et al. 1993)

The first step for computerized two-stage sampling is to obtain alarge bed-material
sample (parent sample) that may be derived from combining several subsamples taken
from within a homogeneous deposit. The parent sample serves as a population surrogate
and should be as large as possible, because the larger the mass of the parent sample, the
more accurate the surrogate. The sampleis sieved, and the sizes of all particles are
entered into a computer data file. No assumptions about the distribution type of the parent
population need to be made. The computer then sel ects random particles from the parent
distribution with replacement to create subsamples to which particles are added until a
specified mass (e.g., ms = 50 kg) is exceeded. The subsample mass needs to be large
enough to avoid bias against or towards large particles in the sample (sample size for bias
avoidance: Section 5.4.2.1, Eq. 5.52, and Section 5.4.3.1, Eq. 5.60 and Fig. 5.20).

Sampling with no replication

The smallest subsample size (q = 2) collected from the parent population consists of two
subsamples, each with a sample mass of ms = 50 kg and a total sample mass of 2 mg >
100 kg. The largest sample size might comprise 30 subsamples (q = 30) with amass of 30
Ms = 1,500 kg. The particle sizes of all percentiles of concern D, are computed for each
subsample, for example the seven percentiles Ds, D1g, D25, Dso, D75, Dgs, @and Dgs. The
smallest subsample comprises two values for each percentile Dy, whereas the largest
subsample comprises 30 values for each Dp. Although Hogan et al. (1993) used mm-units,
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these guidelines recommend that the analyses be performed in units of ¢, because
percentilesin @approach normality better than percentilesin mm.

The next step in the two-stage procedure is to compute the sample standard deviation Sy
for the q percentile values Dy, assuming that the g values for the percentile particle size D,
approximate a normal distribution. Either Eq. 5.53 or a preprogrammed function in a
spreadsheet program may be used to compute the sample standard deviation. The absolute
error e:pp (in mm) around a percentile Dy is computed from:

t1-ar2:g-
_Lgizgl (5.56)

€:Dp;gq = \/a * Spg

which isthe general sample-size equation Eq. 5.55 or 5.2 solved for the error term. Table
5.2 provides values of Student’st. Alternatively, the absolute error e:p, added or
subtracted from the population percentile value Dy, could be computed. If the study
requires aresult in terms a percent error, the percent error eyp, around a percentile Dy is
computed from

eypp = D;pf . 100 (5.57)

Best-fit regression function for visualizing the data trend

For all percentiles of concern, the error computed for each sample size (Eq. 5.56) is
plotted against that sample size. Data plotted from these computations may scatter
considerably (due to the lack of sample replications, Section 5.4.2.1). An example of such
scatter can be observed in Fig. 6.18 (Section 6.4.3.1). In order to visualize the trend of the
data, a best-fit regression function isfitted through the points (Fig. 5.17). Knowing that

the trend of the curves describes a decrease of sampling error e with 1/\/5] , the regression
function may havetheformof e=a- %

The resulting graphs for positive, as well as negative errors, approach the x-axis
asymptotically from both sides (“trumpet curve’) (Fig, 5.17). Graphs as these can be
established for al percentiles of concern. Graphical visualization of the relationship
between sample size and error is useful when determining where to make the compromise
between tolerable error, sample size, and expendabl e effort and costs. Note, however, that
the smoothed graphs imply an unduly high precision of the computed relationship between
sample size and precision. A further caveat of this methodology is that two-stage
approach used for the computations is not designed to determine errors around low and
high percentiles, which may not approach normality for low sample sizes. Thus, the true
precision may differ from the computed precision. However, the computations are
relatively easy and may suit as afirst approximation of sampling precision.
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Fig. 5.17: Results of two-stage computer sampling with no replications for a bed-material sample from the
Cache la Poudre River, Colorado. Relation between absolute error (in mm) around percentile particle sizes
of the Ds, D3g, Dgg, @nd Dg, (top), and D;q, Dsp, and Dgs (bottom) added and subtracted from the population
percentile particle-size and sample mass. The error curves have been smoothed by fitting a regression
function (from Hogan et al. 1993).
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Error-curves

The error is at amaximum when sample size is small (or massin this case) and becomes
smaller as sample size increases. At some point, afurther increase in sample size
contributes only insignificantly to a further decrease in sampling error (see aso Figs. 5.10
and 5.11 in Section 5.2.3.4). The absolute error around a percentile in units of mm for a
given sample sizeis smallest for small percentiles and increases for larger percentiles (Fig.
5.17). However, amore interesting result from the study by Hogan et al. (1993) isthat the
percent error for a specified sample size is not symmetrically distributed around paired
percentiles. For afixed sample size, the percent error islargest around the Ds, strongly
decreases towards the Dy, is lowest for the Dgy and increases slightly for the Dgs. This
result can be expected for the bed-material from the South Fork Cache la Poudre which is
acoarse gravel or cobble distribution dightly skewed towards fines. Thisfindingisaso
in agreement with the results obtained by Rice and Church (1996b) for their bootstrap
analysis of alarge sample from the Mamquam River (Section 5.2.3.4).

For the bed-material sample analyzed in Fig. 5.17, a sample mass of 200 kg determines
the Dy particle size to within £ 5 mm of the population Dy, particle size of 38 mm. More
than 500 kg are needed to define the D5 to the same absolute precision of + 5 mm. The
increase in the absolute error for higher percentiles for a given sample size (or mass) isa
result of using mm-units for the analysis. It isrecommended that the analysis be
performed in @-units if the underlying distribution approaches normality in g-units. The
error would then be highest for low and high percentiles and lowest around central
percentiles. The distribution of errors around low and high percentiles for a specified
sample size is discussed in Section 5.4.4.

Replicate sampling

Scatter in the data points can be reduced if precision is computed repeatedly for different
sets of samples of the same subsample size, and if the mean precision for agiven
subsample sizeis plotted. The more sets of subsamples collected and analyzed, the higher
the precision of the relationship between sample size and certainty of the result.

Replicate sampling reduces the scatter in the plots of sampling precision versus sample
size. The number of replicates needed to produce smooth error curves increases as the
sorting of the parent distribution becomes poorer, and as subsamples with smaller mass
aretaken. Rice and Church (1996b) recommend that about 200 replicates be performed
for each sample size. Ferguson and Paola (1997) even used 500 replicates. Because this
might exceed the capacity of user-devel oped spreadsheets, the use of commercially
available bootstrapping programs may be required (e.g., Resampling Stats, available as an
add-in program to Microsoft Excel, Section 5.2.3.4).

For 200 replications, each sample size g is represented by 200 replicatesry, ro, ... 200
Each of the 200 replicates has a dightly different composition of particle sizes. Thus, the
particle size of the Dsp and all other percentilesis dightly different for each of the 200
replicates constituting the sample size q. The variability is reduced when the Dsy particle
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Size associated with the sample size g is taken as the arithmetic mean of the 200
individually computed Ds particle sizes (Dsg g200). Likewise, the Dgs particle size
computed for the sample size q = 3 is the arithmetic mean of al the Dg, values obtained
from 200 repetitions with a sample size 3 (Dga 3 200)-

The actual two-stage sampling procedure is the same as described in Section 5.4.2.1, with
the exception that each particle-size percentile represents the arithmetic mean of 200
replicates. A diagram explaining the resampling procedure for two-stage sampling is
provided in Fig. 5.18, for a preset subsample mass of 50 kg, two subsample sizesq = 2
with my=100 kg, and g = 3 and mz=150 kg, and with D14 as the percentile of concern.

5.4.3 Analytical computation of sample mass (Ferguson and Paola 1997)

Sample size necessary to obtain a specified precision isinfluenced by avariety of factors
(Section 5.1), but volumetric sample-size equations discussed thus far have not addressed
many of those factors. The empirical recommendations that determine sample mass as a
function of Dk Were devel oped for various sampling goals and physical settings. Thus,
sample-mass requirements vary widely between different equations (Section 5.4.1). None
of the Dnux-based sample-mass recommendations provides information on percentile
errors. The two-stage approach (Section 5.4.2.1) can be used to indicate the error around
the sample mean or median for a specific set of subsamples. A computerized two-stage re-
sampling approach provides a surrogate for percentile errors (Section 5.4.2.2). A bootstrap
approach that re-samples alarge parent distribution repeatedly (e.g., 200 times) can
reliably quantify percentile errors (Section 5.2.3.4) once alarge sampleis collected.

However, a methodology is heeded that allows the user to make areliable estimate of the
sample mass required for atolerable error around a specified percentile for a given stream
setting before the sample is collected, and to compute the sampling precision for a
collected sample. With thistask in mind, Ferguson and Paola (1997) devel oped sample-
mass equations with the following properties: the equations (1) allow the user to compute
the sample mass necessary for avoiding bias; (2) are suitable for computing the
relationship between sample-size and error for any percentile(s) of concern, and (3) can be
applied to bed-material of any standard deviation or sorting coefficient. However, apilot
study is needed to estimate the bed material D5 and the standard deviation (sorting). A
drawback of the approach is that the computations are based on an assumed normal
distribution, and results are correct only if an underlying normal distribution in ¢-units can
be assumed for the deposit, which strictly speaking is rarely the case.

The sample-mass equations determined by Ferguson and Paola (1997) were derived from
three large computer-generated particle-size populations with standard deviations or
sorting coefficients of 0.5, 1.0, and 1.5 . The samples were generated based on an
underlying lognormal distribution of particle mass per size class for particle sizesin mm-
units (equivalent to anormal distribution in terms of @-units). Random samples with
replacement were drawn by computer from these parent populations until samples of
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Fig. 5.18: Diagram explaining a resampling procedure with replicates for the example of a preset subsample
mass of 50 kg, with subsample sizes q = 2 and m,=100 kg, and g = 3 and mz=150 kg, and with D14 being
the percentile of concern. sy, and ;63 are the standard deviation of the D44 particle sizes of the 2 or 3
subsamples, respectively.
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specified volumes were reached. Each sample size was represented by 500 replicate
samplesto ensure a high precision of the computed relationship between sample size and
error.

Computation of relative sample volume and absolute sample mass

In order to develop graphs that are applicableto all particle sizes, Ferguson and Paola
(1997) expressed sample size as the ratio of the total sample volume V and the volume of
the Dsp particle size Vsp. A spherical or ellipsoidal Dsg particle of 32 mm, for example has
avolume of 176 Dso® = 17.16 cm®. A relative sample volume of V/Vs = 1 corresponds to
avolume of 17.16 cm®, and asamplemassof V- ps=17.16 cm*®- 2.65g/cm® =45 g or
0.045 kg, where ps isthe particle density. Similarly, relative sample volumes (V/Vsg) of
10, 100, 1,000, and 10,000 correspond to absolute sample masses of 0.45, 4.5, 45, and 455
kg, respectively. For aDs particle of 16 mm, the corresponding sample masses are 0.006,
0.057, 0.57, 5.7, and 57 kg, respectively (see Figs. 5.19 a-c, 5.21 a-c and 5.22 a-c). Thus,
to compute sample mass in absolute terms, the D5 particle size needs to be known.

Estimation of the Ds, particle size from one other percentile and the distribution sorting
If the only percentile known from a distribution is the Dg,, for example, then the user can
determine the respective Ds, particle size if the distribution sorting is known, and if a
normal distribution in terms of @-units can be assumed. The Ds particle size can then be
determined graphically (Fig. 2.19 in Section 2.1.5.4) or analytically. Fig. 2.19 can be used
to identify the Dy if the distribution sorting s is closeto the values of 0.5, 1, or 1.5. The
curve with the appropriate sorting coefficient is shifted to the right or left until the curve
passes through the one known percentile value, e.g., Dgs = -6.5 @ The D particle size
can then be read from the shifted curve. The ¢, percentile particle size can be estimated
analytically if the sample standard deviation and one other percentile size is known
(Gilbert 1987):

@Go= @+ (L 5 forg>@o (5.58)

or

®o= ®-(L- 9 for @ < @o (5.59)

where @, is the particle size of the known percentile, and Z, indicates the distance between
the percentile p and the median (i.e., @) in terms of standard deviation. Z, can be
obtained from standard statistics tables (e.g., Gilbert 1987, p. 254, Table A1). Vauesfor
Z, for frequently used percentiles are provided in Tables 5.9 and 5.1.
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Table5.9: Valuesfor Z, for various percentiles (See Table 5.1 for more values)

Percentiles: 50 65 75 84 90 95 975 99
35 25 16 10 5 25 1
Z, 0 0.38 0675 0.995 1282  1.645 1.96 2.327
Example 5.15:

From a previous study it is known that the D;s = 68 mm, and the
sample sorting s = 1.67. Convert the D75 percentile size into ¢
units: @ =-3.3219 log(68) = -6.09 ¢ Compute @, using Eq.
558 @o=-6.09+(0.675- 1.67) =-6.09+1.13 =-4.96 @
Converting back to mm yields: Dso = 2*% =31.1 mm

5.4.3.1 Sample mass for bias avoidance

The analysis by Ferguson and Paola (1997) indicated that small samples are systematically
biased towards the fine fraction (Fig. 5.19 a-c). This becomes evident as the number of
large particlesis relatively small in agiven sample volume. Thus, thereis alessthan
average chance for large particles to be included in asmall sample. Consequently, the
sample particle-size distribution is finer than the population size distribution. Bias dueto
the chance presence of an overly large particle in an individual sampleis not addressed in
this computation, because particles larger than the parent distribution cannot be drawn
from the parent population by the computer. But the occurrence of biasin an individual
sample may introduce a pronounced error into the resulting particle-size distribution (Sect.
5.4.1.4).

Figs. 5.19 a-c indicate that bias is more pronounced for poorly sorted rather than for well
sorted sediment. Fig. 5.15 aso shows that the relative sample mass required for avoiding
bias for the Dgs particle size is approximately two orders of magnitude larger than the
sample mass for avoiding biasin the Dsp. On the basis of these results, Ferguson and
Paola (1997) propose a dimensionless equation for determining the bias-avoiding sample
volume V, . Vyisareative sample volume scaled by the volume of the Dsg particle Vso:

log @%@: 13+log(0)+090- Z, (5.60)

Z,, describes the distance between the percentile p and the median in terms of the standard
deviation of anormal distribution (Table 5.9). Eq. 5.60 can be used for any percentile.
The percentile for which biasis avoided is specified through the selection of an
appropriate value of Z,. To apply to the Dgs, Z,, is selected as 0.995 from Table 5.9 or
Table5.1.
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between the sample mean particle size of a given percentilein @-units, averaged over 500 replicate samples,
and the particle size of that percentile in the population. A negative difference indicates the sample
percentile is finer than the population percentile. Sample size is a multiple of the volume Vs, of the
population median particle-diameter. (Reprinted from Ferguson and Paola (1997), by permission of John
Wiley and Sons, Ltd.). Discrete values of sample mass (kg) are given for various Ds, particle sizes (mm) at
the bottom of the plot. The numbers on the bottom of the plots indicate sample mass valuesin kg for 10*,
107 103, 10 10°, and 10° V/Vs, for various Ds, particle sizes.

Example 5.16:
Assume the bed-material sample in @-units approaches a normal

distribution and has a standard deviation of s=1.5 ¢ Relative
sample volume V/Vs for avoiding bias in the estimation of the
Dg, particle size is computed from Eqg. 5.60:

% = 1QL3+l0g(15)+09- 15 0.995)
50

For aDg, particle size of 90 mm, and a sorting of s=1.5 ¢ Dgp is
32 mm (see Fig. 2.19 or Eqg. 5.58). Sample volume without pore
spaceis

Vb =659 (776) - Dso® =659 17.16 cm® = 11,307 cm®

Multiplication by particle density ps =2.65 g/cm® provides sample
mass

m, = 11,307 - 2.65=29,963 g = 30 kg

Dividing by an assumed bulk density of 1,500 kg/m? for shoveled
gravel gives the sample volume of 0.02 m* which is about 2
household buckets of 10 liters each.

Relative sample volume in terms of V/Vx, for bias avoidance was computed with Eq. 5.60
and plotted against sediment standard deviation o for various percentiles between D5, and
Dy inFig. 5.20. Fig. 5.20 indicates that a relative sample volume of V/Vso=30is
required for avoiding bias in the Ds particle size in adistribution with a standard
deviation of 1.5 0. The numbers on the side of the plot present the absolute sample mass
in kg for relative sample volumes of 10, 100, 1,000, etc. If the Ds, particle size of the
deposit was 32 mm, the column under 32 mm is used to interpolate between 4.5 and 45
kg. A relative sample volume of 659 V/Vsy is approximately 6.6 - 4.5 kg = 30 kg.
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Sample mass for bias avoidance can become very large for high percentilesin poorly
sorted river beds. A relative sample volume of 35,000 V/Vs is needed to avoid bias
around the Dgs in a poorly sorted distribution with s=2 ¢@. If the distribution has a Dsg
particle size of 64 mm, an absolute sample massof 3.5 3640 kg = 12.7 metric tonsis
needed.

The widely used sample-mass requirements by Church et al. (1987) suggest that the mass
of aparticle of the Dnux Size should comprise 0.1, 1, and 10% of the sample mass (Section
5.4.1.1). For comparison, these criteriaare also plotted in Fig. 5.20. Fig. 5.20 shows that
even thel0% criterion suffices to prevent bias in all but the 99th percentile.

Sample mass (kg) and metric tons (t)
for Dgg of (mm)

113 16 224 32 45 64

Bias avoidance

1,000,000 D 2t 57t 16t 46t 126t 364t
/ 99
/
//
100,000 / 200 570 16t 46t 126t 364t
/// // D95
//
10,000 / / 20 57 160 455 13t 36t
3 / / Doo
pd
> / / 74
; 10.1% // pd Dgs
1,000 S fe ,,// 2 57 16 455 126 364
/ D7s
/ /
/ 7 /-
1% S Des
/
100 / /{ i ~ 02 06 16 45 126 364
///éj D
:10%//’/ P 50
10- e — | 002 006 016 045 13 36
0 0.5 1 15 2

Standard deviation or sorting

Fig. 5.20: Relation between relative sample volume (V/Vsp) for bias avoidance and sediment sorting for
various percentiles between Dsy and Dgg. Sample sizes for paired percentiles (e.g., D1o and Dg) are
identical. The numbers on the right side of the plot indicate sample-mass values in kg and metric tons for
10 103, 10 10°, 10°, and 10" V/Vs, for various particle sizes of Ds,. (Modified from Ferguson and Paola
(1997), by permission of John Wiley and Sons, Ltd.).

314



5.4.3.2 Sample mass for specified acceptable error

Sampling precision can be quantified by means of the percentile standard error s, in ¢
units between replicate samples. In unbiased samples, s, is computed from Eq. 5.53. The
percentile standard error s, relates to the absol ute error e. g, around a percentile in @-units
by

€ =L1az" S (5.61)

where Z;.412 1S 1.96 for a 95% confidence limit (Table 5.1). Thus, a percentile standard
error s, of £0.15 @-unitsis equivalent to an absolute error e.q, of almost + 0.3 ¢-units,
which, in turn, corresponds to a percentage error in mm-units eyp,, of -18 to +23%, and a
percentage standard error in mm-units S, op of -9 to +12% (Fig. 5.8 in Section 5.2.3.4).

The results of the bootstrap procedure by Ferguson and Paola (1997) in Fig. 5.21 a-c
illustrate a similar trend to the results by Rice and Church (1996b; Figs. 5.10 and 5.11)
and by Hogan et a. (1993; Fig. 5.17). The error decreases with sample size or sample
volume as afunction of 1A/n or 1A/V, respectively. For volume-based sampling, it
appears that the error decreases only after a threshold sample volume has been exceeded,
but this phenomenon may be due to the logarithmic scale of sample size along the x-axis.

Results by Ferguson and Paola (1997) clearly show the relationship between standard
deviation, sample mass, and sampling error. Sample mass for a specified standard error is
orders of magnitude larger for poorly sorted sediment than for well-sorted sediment.
Sample mass for a specified error is aso larger for the Dgs percentile size than for the Dsy.
On the basis of this analysis, Ferguson and Paola (1997) developed a dimensionless
equation that facilitates computing sample volume Vy necessary to obtain a specified
percentile standard error s, when sampling a population with a standard deviation o:

log %j(@: 14+4.2l0g(0) +090- Z, -210g (s) (5.62)

where Z, is the pth percentile variate of the unit normal distribution (Tables 5.9 and 5.1).
For a preset percentile standard error s, = 0.15 @-units, the last term in Eq. 5.62 yields the
numerical value of -1.65 and simplifiesto

log %@: 30+42l0g(0)+090- Z, (5.63)
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If the error around the Ds is of concern, the last term of Eq. 5.63 can be omitted since the
numerical value of Z, becomes 0.

Example 5.17:
For adeposit that can be assumed to approach a normal

distribution and has a sorting of s= 1.2, the relative sample
volume Vy/Vso required for estimating the Dgs particle size to
within a standard error of £0.15 g@-unitsis (Eq. 5.62) is

Mo _ 10(L4+4210g(12) +09- 12 1645-210g(015))
Vso

— 10(1.4+0.33 +1.78 - (-1.65)) — 105.16 — 144,544

If the bed material Dgs particle sizeis 200 mm, the Dsg particle
size can be computed from Fig. 2.19, or Egs. 5.58 and 5.59 and is
50.9 mm. The absolute sample volume Vs can then be computed
from

Ve=144,544 - (116) - Dso° = 144,544 - 69.05cm®
=9,980,494 cm® = 10 m°.

Multiplication by particle density ps =2650 kg/m? provides the
sample mass

ms=10m® - 2650 kg/m® = 26,500 kg = 26.5 metric tons.

Dividing by abulk density of 1.5 kg/m* for shoveled gravel,
sample bulk volume is 17.7 m® (approximately the volume of a
small office).

Relative sample volume in terms of V/Vs, for sample precision of £0.1, £0.15, and +0.2 ¢
standard errors was computed with Eq. 5.63 and plotted versus the sediment sorting for
various percentiles between Dsp and Dgg in Figs. 5.22 a-c. The graphs indicate that
relative sample volume, and thus sample mass, strongly increases with sediment sorting
and with an increase in the percentile size being addressed. Because the parent
distribution was Gaussian in terms of @-units, sample mass for a preset error and sorting
are symmetrically distributed around the mean, and thus identical for paired percentiles
such as the Do and the Dgy.

Fig. 5.22 isused similar to Fig. 5.20. Thefirst step isto select the plot with the
appropriate error (plot a b, or ¢). If, for example, the task isto estimate the sample size
necessary to remain below an absolute error of £0.2 @around the D5 in agravel bed with
astandard deviation of s= 1.5 ¢, select Fig. 5.22 a. A relative sample volume of V/Vg, =
12,000 is obtained from the graph for D75 in Fig. 5.22 a. If the bed-material D particle
size is 64 mm, the absolute sample mass may be read on the right side of the plot as 1.2 -
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36.4 t = 43.5 metric tons. This example is somewhat extreme because the accurate
determination of the Dgs subsurface particle-size in gravel-bed streams is usually not the
task of volumetric sampling. Sample massis orders of magnitude smaller if the Dsp isthe
percentile of interest, and if the bed-materia is better sorted. A relative sample volume of
VIVso = 2,500 suffices for estimating the Dsg to within an absolute error of £0.2 @if the
bed material sortingis 1@ For aDsg particle size of 22.6 mm, sample mass on the right
side of the plot can beread as2.5 - 16 kg = 40 kg.

The user may be frequently surprised by the large sample sizes necessary for volumetric
samplesin coarse gravel and cobble-bed streams. Sample masses larger than afew 100 kg
are usually not feasible to collect in mountain streams. It may become necessary to reduce
the tolerable error for the study, or to restrict precision requirements to central percentiles.

Sample mass (kg) and metric tons (t)
for Dgy (mm)

a. Sandard error of + 0.1¢,
113 16 224 32 45 64

Absoluteerror of 0.2 9 Dgy Dgs Do
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1E6 / / f///,D75 """" 2t 57t 16t 46t 126t 364t
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a4 /
/ ///// /// Des
g 1E5 LA = 200 570 16t 46t 126t 364t
> / // //// // 7~ D
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Fig. 5.22 a-c: Relative sample volume V/Vsg, as afunction of sediment sorting for various percentiles
between Dsy and Dgg for specified standard errors of £ 0.1 g-units (b), *+ 0.15 @-units(c), and of £ 0.2 ¢
units (d). Absolute sample massis a multiple of the volume Vs, of the median-sized particle. The 0.1, 1,
and 10% sample-mass criteria by Church et al. (1987) are included for comparison. (Modified from
Ferguson and Paola (1997), by permission of John Wiley and Sons, Ltd.). The numbers on the right side of
the plots indicate sample mass values in kg and metric tons for 107, 10°, 10%, 10°, 10°, and 10" V/Vs, or

various sizes of Dx. (continued on next page)

318



Sample mass (kg) and metric tons (t) for Dsg (Mmm)

b. Sandard error of + 0.15 ¢
Absolute error of £ 0.3 @ Dgs  Dgs 113 16 224 32 4 64
1E7 7 20t 57t 160t 455t 1260t 3640t
// /, Deo
// J // 5
84
1E6 i . 2t 57t 16t 46t 126t 364t
/. // //I //I
/ yawaw 4 + D
/// S i
o 1ES L~/ S S S Des200 570 16t 46t 126t 36.4t
>LO i 4 y4 D
YAy Sy Av/ 4 y 4
Z / /A AN/
[ /)7 S/
~ /4
1E4 LIS S S 20 57 160 455 13t 36t
Il II/II /I /I
117/, /.~
Yot IS
1000 ////// / 2 57 16 455 126 364
1/
1111//.7
ot /e
0 J 0,
100 ‘//////‘ 51‘04): P by 11102 06 16 45 126 364
0 0.5 1 15 2

Standard deviation or sorting

Sample mass (kg) and metric tons (t) for Dgg (mm)

C. Sandard error of £ 0.2
Absolute error of £ 0.4 ¢ Dgg  Dgs 113 16 224 32 45 64
1E7 7 // 20t 57t 160t 455t 1260t 3640t
/ / / D90
1E6- [ LS 2t 57t 16t 46t 126t 364t

//
] // D7s
1E5 /// / 200 570 16t 46t 126t 364t
3 / / 7 D65 ]

] // /.
1E4 - / 4,// Dso | 20 57 160 455 13t 36t

_ Ly
1000 ;0'1% //////,/

V[ Vs
~~

2 57 16 455 126 364

T1% / 7/ 10%
100 f+——+ i L+ 1102 06 16 45 126 364

0 0.5 1 1.5 2
Standard deviation or sorting

319



The widely used sample-mass criteria by Church et al. (1987), i.e., the mass of a particle
of the Dynax Size comprises 0.1, 1, and 10% of the sample mass (Fig. 5.14, Section 5.4.1.1)
are plotted in Fig. 5.22 for comparison. The 1% criterion (Dpyex <1% of sample mass) is
sufficient to determine the Dg4 and all smaller percentiles with an absolute error of £0.3 ¢
unitsin bed material with a sorting coefficient between 1 and 2. In fact, the sample
requirement could be an order of magnitude or two less than the 1% criterion for
determining the Dsg particle size to within an acceptable absolute error of £0.3 @-units.
However, the 0.1 % criterion needs to be applied for large percentiles > Dgy, or if more
stringent error criteria are used.

5.4.4 Comparison of error curves for low, central, and higher percentiles

The general shape of the error curve, i.e., the relationship between precision and sample
size e=f (1A/n) issimilar for all percentiles, irrespective of the manner in which the
error was computed, and irrespective of any assumptions made about the parent
distribution. However, sampling error is not automatically smallest for the smallest
percentile (e.g., the Ds), but is controlled by the way in which the sampling error was
computed. The error can be lowest for either the Ds, Dsg, or the Dgs within a specified
gravel population depending on whether the error was computed:

e asabsolute or percent error,
* intermsof mm or gunits, and
» from an assumed symmetrical, or asymmetrical underlying size distribution.

Conseguently, comparisons of errors around different percentiles need to specify exactly

how the error was computed and which assumptions were made about the underlying
distributions.

5.4.4.1 Symmetrical parent distributions

Absolute error in units of gand mm

In symmetrical, unskewed parent distributions, absolute errorsin ¢-unitsfor agiven
sample size are paired around the mean. Thus, error curves are identical for the g and @s
percentiles, and the g and @4 percentiles. The errors are highest for the distribution
tails, i.e., the @ and @s percentiles, and lowest for the go. The error curvesfor a
theoretical Gaussian distribution provided by Rice and Church (1996b) in Fig. 5.10 are an
example for the systematical distribution of errors. If the same degree of precisionis
desired for each percentile, a smaller sample size suffices to determine the error around
the mean or some central percentile than for the fine or the coarsetail. If the error analysis
is performed in mm-units, the absolute mm-errors are highest around high percentiles
(e.g., Dgs), and lowest around small percentiles (Ds). The error curves by Hogan et al.
(1993) in Fig. 5.17 are an example. The relative positions of error curves are sketched for
particle sizesin ¢ and mm-units, absolute and relative errors, for symmetrical, unskewed,
aswell asfor asymmetrical, skewed distributionsin Fig. 5.23.
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Fig. 5.23: Comparison of error curves around the Ds, Dsy, and Dgs percentile for different computations of
error (absolute, percent, @-units and mm). All computations are for the same gravel deposit. A normal and
symmetrical parent distribution was assumed in (A), and an asymmetrical distribution positively skewed
towards atail of fineswas assumed in (B).
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Percent error in units of gand mm

The percent error around percentiles in @-unitsis lowest for the ¢o, higher for the g5, and
significantly higher for the g. The relative error around percentilesin mm-unitsis paired,
with the lowest error for the Dsp, and equally high errors for the Ds and Dgs (Fig. 5.23).

5.4.4.2 Asymmetrical parent distributions skewed towards a fine talil

Absolute error in units of gand mm

Particle-size distributions, even when analyzed in @-units, are rarely symmetrical in coarse
gravel-bed streams, but are often positively skewed towards atail of fine particles. The
position of the error curves for the ¢, @so, and @os is different for symmetrical and
asymmetrical parent distributions.

For asymmetrical parent distributions that are skewed towards a fine tail, absolute errors
around percentilesin ¢g-units for a given sample size are highest around the ¢, lowest for
the @0, and only dlightly higher around the s than around the ¢5. The error curves
provided by Rice and Church (1996b) for the bootstrap analysisin Fig. 5.11 are an
example. If the same degree of precision isdesired for each percentile, nearly the same
sample size that suffices to determine the Dsg of the distribution is sufficient for the Dgs as
well. However, a huge sample massis required to estimate the D5 to within the same
precision. An error analysisin mm-units results in absolute mm-errors being highest
around the Dgs, and lowest around the Ds. See the error curves by Hogan et al. (1993) in
Figs. 5.17 aand b for an example. Fig. 5.23 b compares error curves for absolute and
relative errorsin gand mm for skewed distributions. The position of the ¢ and @s curves
are switched if the distributions are negatively skewed towards atail of coarse particles
(e.g., beds comprising mostly sand and afew larger gravel particles).

Percent error for unitsin gand mm

The percent error around percentiles in ¢@-unitsis approximately equally low for the Ds
and the Dgs, and highest for the Ds. The relative error around percentilesin mm-unitsis
lowest for the Dso, higher for the Dgs, and highest for the Ds (Fig. 5.23 b).
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6. Spatial sampling schemes

Spatial sampling schemes refer to the spatial patterns by which individual particles (in
pebble counts) or groups of particles (in areal or volumetric samples) are gathered from
the streambed to provide a sample. Sampling schemes affect the outcome of a sample and
different sampling schemes may produce different results when used in the same stream
reach (Mosley and Tindale 1985). No sampling scheme is genuinely superior to others.
The appropriateness is case-specific and depends on severa factors including:

» gpatial scale of the investigation, that is, whether sampling is to represent bed material
from along reach (ca. 20 stream widths), a single riffle-pool unit, an individual
geomorphological or sedimentary unit, or asmall-scale location;

» degree of spatial homogeneity or heterogeneity of particle-size patterns within the
reach of concern,

» desired sampling precision or tolerable error;

* restrictionsimposed by keeping the sampled volume manageable;

* necessity to keep streambed destruction at a minimum; and

» the specifics of a given study.

Information presented in this section is designed to assist the reader to understand
sampling schemes and select an appropriate sampling scheme for a specific situation.

Three main spatial sampling schemes are discussed in this document:
1. Spatially integrated Covers the entire reach with the same sampling pattern, and

= unstratified sampling  ignores sedimentary™ or geomorphological units®. A reach-
averaged bed-material size is obtained (Sections 6.2 and

6.4);
2. Spatially segregated Distinguishes between geomorphological or sedimentary
= stratified sampling units and may use a separate sampling pattern for each unit
(Sections 6.3 and 6.5);
3. Spatially focused Focuses on a small area of interest, such as near a hydraulic
sampling structure, or fines deposited in a pool (Section 6.6).

! Sedimentary units are streambed areas with uniform particle-size distributions. A sedimentary unit may comprise part
of one or several geomorphological units. Sedimentary units are also referred to as textural units, facies, or as patches,
when areas of similar particle-size distributions appear to be “patchy”. A coarse facies, for example, may cover the
upstream part of a bar and extend into the adjacent riffle upstream.

2 Geomorphological units are areas within the streambed that are part of the same geomorphological feature, such as a
riffle, pool, bar, rapid, run, or glide (see Section 3.2.1 for descriptions of stream morphology). Particle-size distributions
can vary greatly within a geomorphological unit. Bars, for example, display downbar and landward fining.
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Statistical analyses of bed-material samples assume that samples are collected at random
locations. Randomization of sampling locationsis obtained by several sampling patterns:

» Complete random — samples are collected at random locations within
the sampling areg;

e Systematic grid — samples are collected at the intersections of a
systematic grid with a random starting point;

* Overlapping grid systems — subsamples are collected each at a separate grid

system, overlaying the other ones,
* Random within systematic cells — samples are collected at random locations within
grid cellsthat have a random starting point.

Combining these four sampling patterns with integrated (unstratified) or segregated
(stratified) sampling yields eight different sampling schemes that are commonly applied
to gravel-bed streams. An overview of these eight sampling schemesis presented in Fg.
6.1. Theterms*“strata’ and “ stratified” in this document refer to sedimentary or
geomorpholo-gical units. Thisterminology departs from some texts on sampling schemes
where strata and stratified refer to a segregation of the sampling areainto artificial
equally-sized strata, which are referred to as cellsin this document.

Spatially integrated (or unstratified)

systematic grid overlapping grid
with random systems for two- random sampling
complete random starting point stage sampling within cells
e e
®. . . !
)
¥
[}
[ )
Spatially segregated (or stratified)
systematic grid overlapping grid
with random systems for two- random sampling

complete random starting point stage sampling within cells

A

Fig. 6.1: Sampling schemes commonly used for bed-material sampling in gravel-bed streams.

Bedunit1, [ |Bedunit 2, [-==-=jand Bed unit 3.
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These sampling schemes can be applied to al sampling procedures, such as surface pebble
counts, volumetric sampling, and areal sampling. The various sampling procedures have
been presented in Sections 4.1 and 4.2.

6.1 Terminology and sampling principles

Before various aspects of spatia sampling schemes are discussed, some terms regarding
stream types, stream morphology, reach length, as well as spatial homogeneity and
heterogeneity, should be clarified. Furthermore, this introductory section addresses pilot
studies and briefly recalls important aspects of pebble counts and volumetric samples.

6.1.1 Stream types and stream morphology

Stream types and stream morphology refer to the stream type classification by Rosgen
(1994, 1996), and the stream morphologies as classified by Montgomery and Buffington
(1993, 1997). Both classification schemes are discussed in Sections 1.3.1 - 1.3.3.

6.1.2 Length of the sampling reach

The length of the sampling reach is determined by the spatial extent of the sampling goal.
For local studies, a sampling reach often comprises the length of one sequence of
recurring elements of stream morphology. In C-type streams (Rosgen 1994, 1996) with
riffle-pool morphology (Montgomery and Buffington 1993, 1997), this sequence may
include ariffle and a pool and extend over approximately 5-7 times the bankfull stream
width. In meandering streams, ariffle-pool sequence covers one meander bend. In B-type
streams with rather featurel ess plane-bed morphology, the sampling reach may be onein
which there are no visible changes in the streambed composition. In A-type streams with
step-pool morphology, areach could be one, or afew, similar-looking step-pool units.

For amore genera characterization of the streambed material, Rosgen (1996) proposes
sampling a stream section consisting of at least four consecutive riffle-pool sequences,
equaling four meander bends (= two meander wavelengths), or areach length of 20-30
bankfull stream widths. Bevenger and King (1995) extend the length of the reach sampled
by a zigzag pebble count over several hundred meters, covering areach length on the order
of 100 stream widths (Section 6.2.2). Long sampling reaches of 20 stream widths or more
in length are especially important for spatially segregated sampling when particle sizes of
groups of sedimentary units are combined for areach-average value (Lisle and Hilton,
personal comm.). Similarly, for acomparison of particle sizes of geomorphological units,
such asriffles and pools, sampling should extend over severa riffle-pool units to average
any local effects. In this document, the term reach usually refers to the stream length of
one riffle-pool sequence or about 5 - 7 stream widths, unless otherwise specified.
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6.1.3 Homogeneous versus heterogeneous gravel deposits

Gravel surfaces are homogeneous when they consist of a mixture of particle sizes, but
have no spatial variability in the composition of the particle mixture. Particle-size
distributions are then similar in al stream locations. Entire reaches of truly homogeneous
gravel beds arerare.

Near-homogeneity of gravel-beds may be found in large lowland gravel-bed rivers, or in
mountain B-type streams with cobble and gravel beds. B-type streams have a plane-bed
morphology with long, rather featurel ess stream sections characterized as runs. Infrequent
pools, typically forced by channel obstructions (LWD, boulders, or bank projections) may
occur in these channels and are interrupted by infrequent rapids (Section 6.2.2). The
classification of areach as near-homogeneous as opposed to heterogeneous is subjective,
since there are no standards defining the degree of spatial homogeneity or heterogeneity in
fluvial deposits.

Many mountain gravel-bed rivers have heterogeneous bed material in which the
composition of the gravel bed varies between different locations of the reach. In C-type
streams gravel- and cobble beds are composed of sequences of geomorphological units
encompassing bars, riffles, pools, rapids, runs, and glides. Those geomorphological units
often have a characteristic spatia variability of particle sizes, such as downbar and
landward fining on bars (Section 3.2.2). Inthe longitudinal direction, bed-material sizeis
commonly finer in pools (particularly when fine sediment deposits in pools) and coarser
on riffles. Graphic examples of spatial variability of bed-material size in C-type streams
are provided by the detailed field measurements of Lisle and Madgj (1992) (Fig. 3.10). A-
type streams with a step-pool morphology have steps composed of cobbles and boulders
that are only mobile during very large floods. Smaller cobbles or gravel that are annually
mobile can be deposited in pools, or occasionally on midstream deposits, while fine gravel
and sand are primarily found near the banks. Streams containing large woody debris often
have heterogeneous beds because the debris causes spatially varied flow hydraulics with
local scour in one location and deposition in the next. An example of a heterogeneous bed
in the presence of large woody debrisis presented in Fig. 3.12.

6.1.4 Pilot studies

A pilot study prior to the main sampling project is useful for several reasons (Sections
2.1.5.4,4.23 and 4.2.4). It dlowstheinvestigator to become familiar with the sampling
reach, to determine the length of the sampling reach, and to assess the degree of spatial
variability of bed-material size. The categorization of the reach into homogeneous or
heterogeneous is required for selecting an appropriate sampling scheme. Pilot studies may
involve collecting actual samples. Information on a particular particle-size percentile and
the sediment sorting coefficient derived from a pilot sample, or the variability between
pilot samples, can be used to estimate the sample size needed for adesired precision of the
study. The pilot study should include a sketch map of the reach and its delineated
geomorphological or sedimentary units. This sketch map, based on quick visual
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assessments, should aso include bed surface parameters such as the mean and maximum
particle size, the percent fines, bed surface structures, the presence of large woody debris,
or any other parameters of concern.

6.1.5 Spatial aspects of pebble counts

Sampling procedures for pebble counts and number-based sample size recommendations,
are discussed extensively in Sections 4.1.1 and 5.2. However, reiteration of the spatial
aspects of the various sampling procedures, sample-size recommendations, as well as
particle measurements and data recording seems useful.

6.1.5.1 Minimum sampling point spacing

Sampling points of pebble counts should be spaced at least the length of the Dy particle
size, or twice the Dy particle size, in order to avoid serial correlation due to double-
counting large particles. Seria correlation and overrepresentation of large particles also
occurs when the sampling path coincides with the longitudinal direction of clusters or
transverse ribs (Section 4.1.1.2). A large spacing between sampling points can prevent
this overrepresentation.

6.1.5.2 Number of sampling points

The number of particles that should be sampled is largely determined by statistical
considerations. Spatial factors considered in sample-size determinations are minimum
sampling point spacing and the size of the stream reach to be covered by one pebble
count. A detailed analysis of sample size needed to define the D5y and other percentiles
within a specified precision for agiven standard deviation or sediment sorting is presented
in Section 5.2.2 - 5.2.4. Major findings are summarized below.

Although traditionally 100 particles were counted in a pebble count, recent analysis of
sample size indicates that it is advisable to count at least 400 particles (Rice and Church
1996b, Diplas and Lohani 1997). The gravel deposit for which Rice and Church (1996b)
provided a detailed analysis of the relationship between sample size and precision can be
considered representative for many gravel beds. Sediment sizes ranged from sand to large
cobbles, and size frequencies were not exactly, but approximately normally distributed (in
terms of ¢@-units), with adlight skewnesstowards atail of fine particles, and a standard
deviation of 1.2 ¢. A 400-particle sample estimated the Dso to within +0.15 ¢, which is
approximately equivalent to an error of £10 % in terms of mm-units. Such aprecisionis
often desirable in particle-size assessments, although an acceptable level of precision
needs to be selected for each study individually.

3 This value is on the low side for mountain gravel-bed streams that tend to have standard deviations (or sorting
coefficients (Inman 1952)) of 1.5 or higher if the particle-size distribution comprises large boulders. A sorting coefficient of
1.2 - 1.5 may be obtained if large boulders not transportable by frequently occurring floods are excluded from the analysis.

% See Section 2.1.2.2 for conversion between mm and @-units.
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The sample size needed to estimate the tails of the distribution (e.g., the Ds or the Dgs) to
within £0.15 @is larger than the sample size needed to estimate the D to the same
precision. If the underlying distribution of the bed material is symmetrical and normal,
and has a sorting coefficient of 1.2 ¢, the sample size for estimating the Ds and Dgs isa
factor of approximately 2.6 larger than the sample size needed for the D5 (Fig. 5.10).
Thus, if 400 particles are required to estimate the Dsp to within £0.15 ¢, more than 1,000
particles are needed to estimate the Ds or Dgs with the same precision.

Many gravel deposits are not symmetrical and normal, but have particle-size distributions
(in @-units) that are skewed towards afine tail. This deviation from a standard normal
distribution does not significantly alter the required sample size for the Dsg particle-size
estimate. However, the sample size needed to estimate the Ds particle size is more than 4
times larger than the one for the Ds particle size. Thus, if 400 particles were needed to
estimate the Ds, to within +£0.15 ¢ 1,600 particles would be needed to estimate the Ds to
the same precision in distributions skewed towards afine tail. No pronounced increasein
sample size is necessary to estimate the Dgs to within the same precision as the Ds
particle size (Fig. 5.11).

Sample sizes larger than indicated in the paragraph above are needed if precision criteria
become more stringent, and if particle-size distributions become less well sorted. Note
that these sample-size considerations do not account for spatial heterogeneity, but are only
valid for homogeneous sampling reaches, such as sedimentary units. For heterogeneous
reaches, sample sizes are likely to be larger. A two-stage approach should be used to
determine the relation between sample size and precision (Sections 5.2.3.1, 6.3.1.2 and
6.4.4.4). Heterogeneous reaches can be sampled most efficiently if the reach is delineated
into sedimentary (homogeneous) units that are sampled separately (Section 6.3.2).

6.1.5.3 Minimum sampling area

For a sample size of 400 particles, a pebble count (Section 6.2 and 6.3) requires a
minimum sampling area of 400 times the square of the relevant Dok particle size. The
necessary sampling area increases rapidly with the D particle size. For Dy particle
sizes of 64 and 360 mm, the minimum sampling areas are 1.6 and 52 m?, respectively (see
also Table 6.4). For amore generous particle spacing of 2 Dy, minimum sampling area
increases fourfold to 6.6 and 207 m?, respectively.

6.1.5.4 Measurement of particle sizes in pebble counts

The sizes of particles picked up from the streambed during a pebble count are usually
measured in half ¢-units using atemplate and recorded in 0.5 @-unit particle-size classes
(e.g., 22.6 - <32 mm). Binning into ¢gclassesis useful when comparing pebble count data
with sieve data, and using a template reduces errors in particle size measurements.
However, binning into ¢ classes assumes an underlying normal distribution of particle
sizes, an assumption which may be useful in many, but not in all cases.
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If particle sizesin a sampling area are obviously not normally or Gaussian distributed (in
@-units), particle axes should be measured with a caliper and recorded in mm, which
allows more possibilities for later particle-size analysis. However, caliper or ruler
measurements are subject to operator error and not directly comparable to sieve data (see
Section 2.1.3.2 for comparison between ruler and template measurements).

6.1.5.5 Recording pebble count data

Particle sizes from pebble counts should always be recorded in a systematic manner, so
that the approximate location of each counted particle can be traced. To achievethis, all
transects should start on the same side of the stream, beginning at the downstream end of
the reach and working upstream. All particle-size data from one transect should be
recorded sequentially in one column (or row). Additiona information to be recorded are
distance from downstream end of the sampling reach, major geomorphological features of
the transects (e.g., riffle, run, pool-bar), and the water line position (Table 4.3, Section
4.1.1.7). The same applies to zigzag pebble counts (Section 6.2.2) which can be
considered as diagonal transects.

A spatially systematic particle-size record has severa advantages. It permits the user to
analyze whether particle sizes vary in alongitudinal direction by comparing individual
transects, or sets of adjacent transects. Lateral particle-size variability can be estimated
from moving averages over 5 to 9 consecutively counted particle sizes. Spatial patternsin
particle size determined from the record may not have been obvious prior to sampling. A
gpatialy systematic particle size record can also be used to delineate sedimentary or even
geomorphological units retroactively. The delineation can be made visually (looking at
the numbers) or by applying a moving window technique for a statistical delineation
(Crowder and Diplas 1997) (Section 6.3.2.3). Particle-size data can then be consolidated
for each sedimentary unit (Section 6.3.2.1). Thus, a crude spatially segregated bed-
material size analysis can be obtained after the fact from a spatially integrated sampling
scheme.

6.1.6 Spatial aspects of volumetric sampling

Spatial aspects of sampling schemes for volumetric samples are literally multi-layered and
more complex than those for pebble counts.

6.1.6.1 Layers to be sampled

Gravel beds are often vertically stratified. Stratification of gravel bedsis described in
Section 3.3, and sedimentary layers are described in Fig. 4.1, Section 4, and Section 4.2.
Volumetric samples can be obtained from different layers that have different particle
sizes. The exact delineation of the sampled layer is crucial to the sampling success.
Layers or strata that can be sampled by volumetric samples are:
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* thecoarse armor layer (1-2 times the b- or c-axis of the Dnux particle thick),

» thefiner subarmor layer,

» the subsurface layer below the particles immediately exposed on the bed surface, and
* theunstratified bed material.

The surface sediment, i.e., particles exposed to the surface, cannot be sampled
volumetrically because conceptually, there is no thickness associated with the sediment
surface.

Volumetric sampling of the armor layer in coarse gravel and cobble beds has several
problems: (1) A stringent criterion defining the depth of the armor layer is not available,
and each study needs to define its own criteria. (2) Taking a volumetric armor-layer
sample down to a specified depth isfeasible in bed material of fine gravel where the
armor-layer sediment can be scraped off the subarmor sediment, but becomes difficult in
coarse gravel and cobble beds. (3) For practical reasons, an armor-layer sampleislimited
in areal extent to approximately 0.1 - 1 m?. The sediment mass contained in such armor-
layer samplesis often too small to be accurate (Section 5.4) and requires taking several
subsamples. (4) Volumetric armor-layer samples and surface pebble-counts yield
different particle-size distributions in armored gravel-bed rivers because volumetric
armor-layer samples contain fine subsurface sediment that is not part of the surface
sediment and not sampled by pebble counts.

The subsurface (surface layer removed) and the subarmor layer (armor layer removed) are
conceptually similar in particle size, and both are usually finer than the armor layer
sediment. This document uses the term subsurface sediment for the sediment from both
below the surface and below the armor layer unless a specification is necessary.

6.1.6.2 Relation between surface and subsurface sediment size

The spatial variability of the surface sediment is visible, and a sampling scheme can be
selected that is appropriate for the specified degree of spatial variability and the study
objectives. Subsurface or subarmor sediment is hidden from view and only inferences
about its spatial variability are possible based on principles of the relation between surface
and subsurface sediment. Buffington and Montgomery (1999a and b), and Lisle (pers.
comm.) found alinear relation between percentiles of the surface and subsurface
sediment-size distribution for a sediment patch (facies)®. Although the subsurface
sediment is often finer than the surface sediment, the exact relation varies between facies.
Thus, the spatial variability of the surface sediment may be used as afirst approximation
of the spatial variability of the subsurface sediment, and an appropriate sampling scheme
may be selected accordingly (also see Section 6.5.2).

However, the surface sediment size is not always an indication of the subsurface sediment
size. For example, aveneer of fine sediment or alobe of coarse sediment may be

Facies or patches are homogeneous streambed areas with no systematic spatial variation of bed-material size.
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deposited on the surface after the subsurface sediment was formed during the last flood
event. Inthiscase, the spatial variability of facies units on the surface is likewise not
indicative of the subsurface facies and a sampling scheme selected on the basis of the
surfaces facies may be inappropriate for sampling the subsurface sediment.

6.1.6.3 Feasibility and the statistical relationship between mass of subsamples,
total sample mass, and nhumber of sampling locations

Anindividual volumetric sample describes the bed material at a specified sampling
location. Several volumetric samples need to be obtained at various locations to
characterize the bed-material size within areach. Sampling schemes for volumetric
samples need to consider three factors:

1. number and mass of individual samples,
2. total sample mass, and
3. gpatial alocation of sampling locations within the sampling area of concern.

In moderately sorted fine gravel beds, the three factors can be considered statistically
interdependent. A preset sampling precision determines the total sample mass from a
sample mass - error relation (Fig. 5.22 a- ¢), or from a two-step approach (Section
5.4.2.1). Sample mass for individual volumetric samples can be estimated from sample
mass equations for bias avoidance (Section 5.4.3.1), or empirically from the percentage
mass of the Doy particle size (Sections 5.4.1 and 5.4.1.2). Total sample mass divided by
the mass necessary for bias avoidance in individual samples yields the number of
sampling locations that need to be allocated in a strict or randomized grid pattern over the
reach or sampling area of concern.

A strict statistical approach is not feasible in coarse gravel-bed mountain streams because
alotting several hundreds of samples over areach leads to sample masses of severd
hundreds or thousands of kg. The coarseness of the bed material and the sampling
objectives determine the sampling equipment and the mass of individual samples,
although several subsamples can be combined to form an individual sample. Pipe
samplers (Section 4.2.4.5) appropriate for fine gravel-bed rivers collect afew kg of
sediment. Barrel samplers (Section 4.2.4.6) and plywood sheets (Section 4.2.4.7) are
more appropriate for coarse gravel- and cobble-bed rivers and collect about 50 kg per
sample.

When using a spatially integrated sampling scheme to sample the reach (Sections 6.4.1.
and 6.4.2), the number of samples needed depends on the size of the reach and how
spatially variable particle-size distributions are within the reach. When sampling is
spatially segregated (Section 6.5), the size of a sedimentary or geomorphological unit
determines the number of samples that can reasonably be collected from the sampling
area. Collecting 100 barrel samples of 50 kg each may satisfy a preset sampling precision,
but doing so on ariffle 10 m by 10 min size destroys the site. Two to four barrel samples
may be justifiable from an ecological standpoint. If apipe sampler isused in afine gravel
bed, ten or more samples may be appropriate for a 100 m? riffle.
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The selection of a sampling scheme and the total sample mass for volumetric sampling are
often governed by practicality, particularly in coarse mountain gravel-bed streams. Both
sampling scheme and sample mass may be a compromise between desired sample
precision, the specifics of a given study goal, the particulars of a sampling site, funding,
and logistics. The reasonable number of sampling locations in asmall reach or on a
sedimentary unit in mountain gravel-bed rivers may not suffice to cover the spatial
variability, and the precision obtained from a small total sample mass may not alow more
than arough estimate of the Ds, particle size. However, thoughtful planning of the
statistical analysis and the field work may assist obtaining the maximum information
possible out of arestricted sampling condition (Section 5.4.1.4, 6.4.3 and 6.4.4).

6.2 Spatially integrated or unstratified pebble counts (reach-averaged
sampling)

Spatially integrated pebble counts cover the reach evenly with a preset sampling pattern.
The resulting particle-size information is reach-averaged, unless a spatially distinct record
permits spatial segregation of the data at alater time (Sections 6.1.5.5 and 6.3.2.3).
Reach-averaged information on bed-material particle size may be used for avariety of
purposes which include the computation of reach-averaged bedload transport rates, a
comparison of bed-material sizes between reaches, or to detect a change over time when
sediment supply to the reach has been atered (Lisle et al. 1993). A comparison of the
reach-averaged surface D5, Size with the Ds, particle size of bedload (Lisle 1995), of the
subsurface Dsg (Dietrich et al. 1989), or the D5y Size that the stream is competent to
transport (Buffington and Montgomery 1999¢) may be used to evaluate whether transport
issupply or transport limited.

Sampling patternsfor different degrees of reach homogeneity or heterogeneity

The tightness of sampling patterns used in spatially integrated sampling schemes should
reflect the degree of spatial variability of bed-material size, i.e., the degree of reach
homogeneity or heterogeneity. For streambeds with moderate spatial variability in bed-
material size, i.e., relatively homogeneous beds, widely-spaced sampling patterns are
appropriate. Asthe degree of spatial variability of particle sizes over the reach increases
or becomes more complex, the sampling patterns covering the reach must become more
tightly spaced in order to sample all sedimentary units of the reach in arepresentative
manner (Table 6.1).

Sampling patternsfor different ease of wadability and particleretrieval

The regularity of the sampling patterns should be selected considering how well all
streambed | ocations are accessible to the wading person and the ease of particle
identification and retrieval. Easily wadable and well-sorted gravel beds may be sampled
by paced transects or unplanned zigzag courses. Both sampling schemes allow the
operator some latitude in deciding the sampling path. Regular and pre-determined sampling
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schemes, such as parallel transects along measuring tapes or sampling at grid points are
required in beds in which wading and particle retrieval are difficult. Operators may be
tempted to avoid sampling in deep spots or behind obstacles and to avoid retrieving
interstitial fines and wedged particles (Sections4.1.1.1 - 4.1.1.4).

The ideal sampling scheme for areach should reflect both the degree of homogeneity/
heterogeneity and the ease of sampling, i.e., the ease of wadability, particle selection and
particleretrieval. If homogeneity of the reach is paired with well sorted gravel beds and
easy wadability, sampling may use a pattern that is widely-spaced and completely random
or unsystematic. Examples are widely-spaced paced transects and unplanned zigzag
walks (Table 6.1). If heterogeneity of the reach is paired with poor sediment sorting and
difficult particle retrieval, atightly-spaced grid pattern should be used.

Table 6.1: Suggested spatially integrative sampling schemes for surface samples in reaches with different
degrees of spatial variability of particle sizes, ease of wadability and particle retrieval

Spatia variability of Sampling scheme Ease of wadability
particle sizes — Tightness Regularity <7 and particle retrieval
Near-homogeneous Widely-spaced Random or irregular Bed easily wadable,
Some B-type streams with> - paced transects <— well sorted gravel,

plane beds, or sections of - unplanned zigzag walk easy particle retrieval;
large streams

Heterogeneous Tightly-spaced Regular Bed poorly wadable,
e.g., C-type streamswith > - transects along a tape <— poorly sorted gravel,
pool-riffle sequences, - grid over entire reach difficult particle retrieval;
complex bars

6.2.1 Near-homogeneous reaches: paced transects, transects along
measuring tapes, and an unplanned zigzag course

Easily wadable and well-sorted gravel beds in near-homogeneous reaches are most likely
to occur on sections of large dry gravel bars. Bedsin such reaches can be sampled by
picking up particles from paced transects (Wolman 1954) or by following an unplanned
upstream zigzag course across the reach. However, these two sampling schemes are not
suitable if deep water, obstacles, mud, rapids, fast flow or protruding rocks affect the
sampling path of the pacing person, and if interstitial fines and wedging make particles
difficult to retrieve from the bed. Difficult wading and particle retrieval may tempt the
operator to consciously or unconsciously avoid sampling at those locations, thus creating
abias against particlesin poorly accessible locations (Sections 4.1.1.3 and 4.1.1.4).
Parallel transects (Leopold 1970) placed along measuring tapes, or samplingin a
premeditated zigzag course allows sampling the reach in a more systematic pattern and
reduces the possibility for operator subjectivity. The most even coverage of an
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approximately homogeneous reach is attained by performing pebble counts in a systematic
grid pattern established by transects along a measuring tape.

The reach-averaged particle-size distribution in a homogeneous reach is estimated from a
combined sample of all particles sampled within the reach. No information is obtained on
the spatial variability of the particle sizes.

6.2.2 Long and relatively homogeneous stream sections: planned zigzag
course

B-type streams with plane-bed morphology are representative of streams with relatively
homogeneous beds. Long runs with afew pools forced by large rocks or large woody
debris are separated from each other by occasional rapids. Paced transects and unplanned
zigzag walks may be appropriate here. However, these sampling patterns are not
appropriate where pools, rapids or large woody debris causes spatial variability in particle
size and where poorly sorted gravel beds make wading and particle retrieval difficult. The
unpremeditated sampling paths of both sampling patterns are guided by convenience and
caution and cause irreproducible sampling results (Kondolf 1997 b). In order to avoid
operator bias in selecting sampling locations and particle retrieval, the sampling pattern
should become more systematic and provide less opportunity for operator subjectivity.
Zigzag pebble counts with a premeditated, systematic course, and parallel transects along
ameasuring tape are often suitable in B-type streams with plane-bed morphology.

Systematic zigzag sampling path

A planned, symmetric, bank-to-bank zigzag course may be viewed as a sequence of
diagonal transects that integrate over both lateral and longitudinal bed-material variability.
When along stretch of river is sampled by a zigzag course, it isimportant that the
sampling path is premeditated and based on stream dimensions and intended sample size
(Fig. 6.2). Bank contact points must be spaced evenly and independent of any stream
features to ensure statistical reliability of the sample. Unpremeditated sampling paths are
subjective and do not provide statistical reliability in non-homogeneous stream reaches.
“Eye-balled” zigzag sampling paths should be reserved for quick reconnaissance
sampling. Bevenger and King (1995) proposed that the ratio of thalweg length to the
length of the zigzag course walked by the operator should be about 0.9. Thisvalueis
obtained when bank contact points for zigzag sampling are spaced at intervals of two
stream widths. However, atighter or wider zigzag course may be needed to obtain the
necessary number of sample points (i.e., sample size) and to obtain the necessary sample
point spacing within the reach of interest.

Recall that sample size should be at least 400 particles to determine the Dsp to within
approximately + 0.15 @or 10 - 11% in poorly sorted (s= 1.5 ¢) bed material. The sample
size should be larger when percentiles at the distribution tails, particularly at the finetail,
are to be determined (see Section 5.2 for discussion of sample size).
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Fig. 6.2: Systematic zigzag sampling scheme with bank contact points evenly spaced at two stream widths.
Theratio of thalweg length to length of the zigzag courseis 0.9.

Minimum spacing for avoiding serial correlation in pebble countsis 1 - 2 Dy diameters,
i.e,, 0.3—0.5min many mountain gravel-bed streams. In astream 5 m wide, azigzag
course that collects 400 particles at 0.3 m intervals and touches the banks at intervals of
two stream widths covers atotal stream length of 107 m, or 21 stream widths (Table 6.2).
Thisis equivalent to the length of a sampling reach recommended by Rosgen (1996). If
the sampling objective is to detect a change in particle-size distribution over time within a
stream section, the reach should extend over roughly 100 stream widthsin order to
average-out local effects caused by sediment deposits at the mouths of small tributaries,
rockfall, or in backwater areas. Thus, the spacing between sampling points increases
accordingly. Using the same scenario with bank contact points every 10 min a5 mwide
stream and a 400-particle sample size, a zigzag pebble count with a 2.2 m spacing covers
800 m of stream length, or 160 stream widths (Table 6.2).

Table 6.2: Longitudinal extent of a 400-particle zigzag count with bank contact points every 2 stream
widthsin streams 5 m and 10 m wide.

Stream width (w):

5m 10m
Sample point spacing:

22m 0.3m 21m 0.3m
Particles per diagonal, ny 5 37 11 73
Number of sections, ng= 400/ny 80 11 36 55
Thalweg length covered, Ly=ns- 2w 800 m 107 m 727 m 109 m
Number of stream widths covered, n, = L/w 160 w 21w 73 w 11w
Zigzag courselength, Lz=ns- /W + (2w)* 894 m 120 m 805 m 122m
LJ/L, 0.9 0.9 0.9 0.9
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The spacing L, between particles for zigzag pebble counts can be computed from

AW 2w L
Lp_ N - 2W (61)

where w is the stream width, L; is the thalweg stream length, and ns is the number of
particles to be sampled.

6.2.3 Heterogeneous reaches and complex streambeds

Sampling the surface of a heterogeneous reach with a spatially integrated sampling scheme
has advantages and disadvantages that should be weighed before starting the sampling
project. One aspect istime. Spatially integrated sampling is often faster than spatially
segregated sampling because delineation or surveying of the various geomorphological or
sedimentary unitsis not necessary (Sections 6.3.2.1-6.3.2.3). Another aspect is the degree
of spatial heterogeneity within the reach. Information obtained from spatially integrated
reach-averaged sampling may be suitable in a mountain B3-type stream with little sediment
supply and a gradual transition of areas with finer and coarser sediment. However, alow
gradient C-type stream with ample sediment supply is likely to have areas of distinctly
different surface sediment and, in this case, reach-averaged information on surface
sediment is not very informative. Anincrease in the amount of sand delivered to the
stream, for example, could produce sand patches, but their presence might not significantly
affect the reach-averaged Do or Dgp particle sizes. The presence of sand patches could be
better accounted for using spatially segregated sampling (Section 6.3.1). Another aspect to
consider when selecting a sampling scheme is the sample size required for a preset
precision. In reaches with pronounced spatial variability of particle sizes, sample standard
deviation varies between sampling locations and one-step sample-size equations (Section
5.2.1) are not applicable to the reach as awhole. Sample size either needs to be computed
for individual sediment units, or a two-stage sampling approach is necessary in which
samples are taken from several grid systems overlaying the reach, each dlightly shifted
against the other (Section 5.2.3.1) (Fig. 6.3). Thismay result in alarge sampling effort.

6.2.3.1 Grid sampling and lay-out of the grid

If spatially integrated sampling is the selected sampling scheme for a heterogeneous reach,
atightly-spaced systematic grid pattern that evenly covers the entire sampling reach is
required for reach-averaged particle-size information (Diplas and Lohani 1997). Entire
coverage implies that particles from all possible sampling locations are included in the
sample (Fig. 6.4). If thisis physically impossible because a potential sampling location is
inaccessible or a particle is unretrievable, it is statistically more accurate to make an
educated guess about the size class of such particles than to exclude those locations from
the sample altogether.

336



T[] : : T T
AR IR SO 0 CHUR R 0 O S U0 O SO O O - A SSITIO 0  soepre ez
SR R feosbesfndrendendnd S S 3 O O U oechaspes FAR 0
0 OO 0 o bt eeheedens AT O O I O ke ecenenendens oo drenpentons Ll
U 0 OO0 WO OO T AN B S N 0 AR OUO AN SO A% 0 9 0 o o eedenspes AR OO S PRI
A SO0 O S0 - O 0 O B O RO S M R 0 O
0 8OO O U S O 0 FAP 0O OO 0 U0 D O 00 O OO 00 0 O 0 OO
S e
Three separate grid systems T

e pmm g, .

| | | : H

| | | H H

: | P

i r | ; .....................

! I b

| | |

boicl )

Fig. 6.3: A reach covered by three grid systems each dightly shifted relative to each other.

The grid orientation should be rectangular so that each grid point represents a streambed
section of the same size. In adlightly sinuous reach, agrid of tightly-spaced transects
perpendicular to the low flow streambed are widely-spaced at the outside bends, and

Facies units - - -0

Geomorphological
units

-----

coarse Very coarse

pool bar

Fig. 6.4: Sketch map of areach with its facies units, the underlying geomorphological units, and a sampling

grid (sampling points at grid intersections).
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tightly-spaced at the inside bend. This uneven sampling pattern underrepresents particle
Sizes at the outside bends, and overrepresents particle sizes at the inside bends, potentially
causing samples that are biased against coarse particles. In moderately sinuous reaches,
this bias can be mitigated by adjusting transects to the high flow bed which is usualy less
sinuous than the low flow bed. In highly meandering streams, a reach consisting of
several meander bends should be sampled by arectangular grid unconnected to stream
morphology, if areach-averaged bed-material particle sizeisto be obtained from ajoint
particle-size analysis of all sampled particles. Laterally, transects or grids should extend
over the entire bankfull width when the sampling objective isto provide a reach-averaged
estimate of channel bed conditions.

6.2.3.2 Grid spacing and areal extent of the sampling grid

The grid spacing used for spatialy integrated sampling is determined by three factors: (1)
The sample size needed for atolerable error given the sorting of the bed material, (2) the
minimum grid spacing required to avoid serial correlation due to double counting of an
individual clast within a particle cluster, and (3) the areal extent of the sampling reach.
Recall that pebble counts of 400 particles provide an precision of about £0.15 ¢, or £10 -
11% for the Dgp particle size for gravel bed-material with atypical sorting coefficient
(Inman 1952) of approximately 1.2 (Sections 5.2.3.4 and 6.1.5.2). The error islarger for
more poorly sorted bed material or for thetails of the distribution (Sections 5.2.1. and
5.22).

For gravel- and cobble-bed streams with a Dy particle size of small boulders, minimum
sampling-point spacing should be 0.3 - 0.5 m. This meansthat a stream width of 5 m can
hold 10 - 17 sampling points per transect, but considerably less if the grid spacing isto
accommodate large boulders. If the streambed area to be sampled is small, e.g., astream
section of 1 - 2 stream widths, it is best to select a square sampling grid which facilitates
the densest sampling point spacing possible.

Representative spatially integrated sampling of a morphologically or sedimentologically
diverse sampling reach must ensure that a sufficient number of sampling points falls onto
each unit to ensure afair representation of that part of the reach. A grid system with about
20 transectsis required to cover the morphological and sedimentary units within ariffle-
pool section (from one riffle to the next riffle) in sufficient detail (Fig. 6.5). The actual
number of transects needed in a particular stream reach can be cal culated based on the
following considerations:

The stream reach to be sampled is ariffle-pool sequence 5 m wideand 30 mlong (i.e., 6
W). The Dmax 1S0.3 m. A grid spacing of 0.3 m yields 17 sampling points per transect.
20 transects yield 340 sampling points, which isless than a sample size of 400 required in
poorly sorted gravel beds. 408 sampling points are obtained by sampling 24 transects
each spaced 1.25 m apart. If agrid spacing of 0.5 m was selected, with 10 sampling
points per transect, the reach would be covered by 40 transects each spaced 0.75 m apart.
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Fig. 6.5: Sampling grid with 20 cross-sections covering the entire reach in a small (top) and medium-sized
(bottom) stream.

The widest spacing between individual sampling pointsis obtained by a distance of 0.625
m between sampling points on a transect, which allows 8 sampling points per transect. 50
transects each spaced 0.6 m apart yield atotal of 400 sampling points.

Small cobble-bed streams less than 2 m wide are difficult to sample with a pebble count

because areach 12 m long may have only 200 grid points, even if the grid spacing is set to
the minimal value of the Dy« particle size. In this case, either alower criterion for
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sampling precision should be accepted, or sampling should be extended over a stream
reach long enough to provide a sufficient number of grid points.

6.3 Spatially segregated pebble counts (sampling each unit
individually)

Whereas spatially integrative sampling ignores geomorphological or sedimentary units
and the associated patterns of spatial variability in bed-materia size and sorting within a
reach, spatially segregated sampling distinguishes between individual streambed areas that
have particle-size distributions different from neighboring areas. Depending on the study
objective, a heterogeneous sampling reach can be delineated according to
geomorphological, or sedimentary criteria, and sampling can either encompass all units or
be restricted to one or afew.

6.3.1 Geomorphologically stratified sampling

Geomorphologically stratified sampling delineates all geomorphological® units within a
reach, such asriffles or pools, and samples each unit individually (Kondolf 19974). The
results of geomorphologically stratified sampling provide insight into the patterns of
gpatial variability of bed-material size and permit comparison of particle sizes among
different geomorphological units (e.g., riffles and pools, or bar head and riffle).
Alternatively, the same geomorphological units can be compared between different stream
reaches or over time. The differences in particle sizes between units can provide insight
into whether sediment transport is supply limited or transport limited. A reduction in
sediment supply, for example, can be analyzed by comparing the dominant large particle
size Dyom @t the upstream end of bars with the riffle particle size distribution (Riffle
Stability Index, RSI, Kappesser 1995). Dgom approaches the riffle Dyax-particle sizein
aggrading streams, but is closer to theriffle Dsp Size in degrading streams. Thisis because
when sediment supply is reduced, riffles respond by coarsening, whereas the size of
dominant large particles at the upstream end of bars remains unaffected for some time.

Aninput of sand and fine gravel into a stream reach is not necessarily shown by fining on
riffles. Introduced fine sediment is more likely to be accumulated in depositional areas,
such as pools, backwaters, wakes, and along banks. Thus, acomparison of the volume of
fine sediment stored in pools over time or between reaches can be used for monitoring
fine sediment supply to streams (Section 6.6.2)1(Lisle and Hilton 1992; 1996; 1999).

Similarly, acomparison of particle sizes from the same geomorphological units over time,
space, or between streamsis useful for monitoring the effects of changesin water and
sediment supply. Such changes may not be detectable when monitoring reach-averaged
particle-sizes.

6 See footnote 2 in Section 6.
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6.3.1.1 Characterization and delineation of geomorphological units

The first step in geomorphologically stratified sampling is to carefully delineate the
various geomorphological units. Thisis performed visually based on recognition of
streambed topography, flow patterns, and patterns of spatial bed-material variability. The
delineation of geomorphological units may be difficult, particularly for inexperienced
operators (Poole et al. 1997). Delineation requires training and the results are affected by
the stage of flow. The frequent lack of well-defined boundaries between
geomorphological units, and the deviation of geomorphological units from textbook
descriptions, make delineation difficult and introduce subjectivity. Even trained
geomorphologists may be inconsistent in their delineation of geomorphological unitsin
different stream types. A description of the characteristics of geomorphological unitsis
provided in Section 3.2.

6.3.1.2 Grid sampling on individual geomorphological units

Delineated geomorphological units and their spatial patterns of bed-material size should
be shown in a sketch map of the reach to help design the optimum sampling scheme for
each unit. Closely-spaced parallel transects or a square grid within a geomorphological
unit ensures representative sampling in most cases. The grid spacing should not be
smaller than the largest particle size to be included in the sample in order to avoid
counting a large particle multiple times. Counting alarge particle more than once
introduces serial correlation into the sample and is not recommended. To do so
overemphasizes the presence of large particlesin small samples and disturbs the relation
between sample size and error because sample-size statistics assume random, non-
correlated sample points.

A geomorphological unit often has spatial variability in particle size distributions, and
sample-size recommendations provided in Section 5.2 are not applicable because they
refer only to homogeneous streambed areas. In order to establish arelation between
sample size and error on heterogeneous units, a two-stage sampling approach (Section
5.2.3.1) may be used. The heterogeneous unit is sampled multiple timesusing a
systematic grid that coversthe entire unit. The grid is dightly shifted for each subsample
(Fig. 6.6). The two-stage approach then determines how many subsamples are needed in
order to obtain a desired precision for the sampling result.

Usually, atotal sampling effort has a higher statistical validity if the total large sampleis
broken up into several subsamplesthat are each collected with a dlightly shifted grid. Grid
spacing may need to be tailored to each geomorphological unit within areach since the
patterns and the degree of spatial particle-size variability vary among geomorphological
units.

Small geomorphological units
Geomorphological unitsin small streams may be too small to provide a sufficient sample
sizefor the smallest grid spacing usable for a given D particle size, and even when
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Fig. 6.6: Threereplicate samples of ariffle using three grid systems, each dightly shifted relative to each
other.

multiple shifted grids are used. If the precision resulting from a small sample sizeis not
acceptable, the user may combine samples from several adjacent geomorphological units
of akind, e.g., samples from several riffles or from several bars. If the study objective
focuses on one particular riffle or bar, the problem of a small sampling area may be
circumvented by taking one or several areal samples (Section 4.1.3). Areal samples
include all particles within the delineated area. Thus, the sampled area can be much
smaller than required for grid samples. For small areas, areal sampling increases the
potential sample size and precision. However, the conversion necessary to compare areal
samples with grid samples may be difficult (Section 4.3).

6.3.1.3 Sampling on riffles only

Bed-material sampling is sometimes limited to riffles because the cross-sectional channel
shape and flow hydraulicsin areach tend to be most uniform on riffles. In addition,
riffles are commonly the shallowest areas in an inundated streambed and have
comparatively low spatial variability in particle size and little sand in the surface layer.
Thus, riffles are the most convenient stream location for pebble counts.
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However, the analyst must keep in mind that sampling on ariffle does not provide a
reach-averaged particle-size distribution. Often, but not aways, riffles have coarser bed
material than the reach because finer sediment is eroded off theriffle surface. Also, if
boulders are supplied to the reach from rock falls or debris flows, riffles may be finer than
the reach average. Riffles may be the location with the steepest local gradient, but are not
necessarily coarser than the reach average (Clifford 1993). The reason for thisis that
riffles may be stabilized by structural elements, such as clusters, particle interlocking, and
imbrication (Sear 1996) (Fig. 3.9).

Whileriffle particle-sizes are not necessarily indicative of the reach as awhole, theratio
of riffle sediment size to the sediment size of other geomorphological unitsis frequently
used to determine whether bedload transport is supply or transport limited (Section 6.3.1).
Riffle surface sediment size could also be monitored over time or compared between
different sites.

Bed-material sampling for bedload-transport computationsis often limited to riffles. The
argument for this practice is that bedload is often computed for ariffle cross-section only,
and that all stream sediment is transported through a specified cross-section. However,
bed material may be entrained or deposited at many stream locations within a reach.
Thus, bed materia from the entire reach affects bedload transport and using the reach-
averaged bed-material size distribution for bedload-transport modeling within a given
Cross-section seems more appropriate.

6.3.1.4 Proportional sampling on long reaches

If the study aim is to estimate the average particle-size distribution over along
meandering reach and to obtain information on the different particle sizesin riffles and
pools, Rosgen (1996) proposes a proportional procedure that samples riffles and poolsin
proportion to their occurrence along the reach. Reach length for this approach extends
over two complete meander wave-lengths, which comprise four individual meander bends
and thus four riffle-pool sequences. With ariffle spacing of 5 - 7 stream widths, areach
covers a stream length of 20 - 30 stream widths. While walking the reach, the stream
length occupied by pools and rifflesis measured. Riffle-like features such as rapids, runs,
and glides (Section 3.2.2.2) are included into the riffle category. Once the percentage
stream length occupied by riffles and poolsis determined, transects are placed so the
percentage of samplestaken onrifflesisequal to the percentage of channel reach length
delineated as ariffle. For example, if 70% of the reach length was classified as riffle-
dominated, 70% of all transects would be placed into riffle-dominated sections (Fig. 6.7).
Rosgen (1996) suggested using 10 transects per reach, so the number of transects allocated
to riffles and pools can be easily determined. On each transect, 10 particles are sampled
with even spacing, resulting in atotal sample size of 100. Since particles were sampled
on aproportional basis, data from riffles and pools may be combined for ajoint particle-
size analysis to obtain areach-averaged particle-size distribution.
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Fig. 6.7: Allocation of transectsin areach of consecutive riffle-pool sequences on a proportional basis.
(Redrawn from Rosgen (1996), by permission of Wildland Hydrology).

The proportional procedure described in this section can be a quick estimate of the median
particle size over along reach if thereislittle spatial variability within each
geomorphological unit. However, geomorphological units are often spatially non-
homogeneous. When the proportional procedure with 10-transects per reach is applied to
reaches where particle sizes vary between riffles and pools, and where particle sizes vary
between consecutive riffles or consecutive pools, sampling is unrepresentative and
unsystematic. Anincrease in the number of transects per reach increases sample
representativeness and statistical accuracy by avoiding: (1) a misfit between the number of
transects and the number of riffles and pools per reach, (2) operator arbitrariness, and (3)
an unrepresentative, small sample size.

If areach comprises four riffle-pool units, and 70% of the reach length isidentified as
riffle, 30% as pool, and each reach is sampled by 10 transects, then seven transects need to
be allocated onto four riffles and three transects onto four pools. Consequently, one of the
rifflesis sampled with only one transect, and one of the poolsis not sampled at al. Such a
misfit could be avoided if the same number of transects is allocated to each of the riffles
and the pools. The percentage stream length occupied by riffles or pools (e.g., the 70%
riffles, 30% pools) may then be proportionally sampled by placing 7 transects onto each
riffle and 3 transects onto each pool. This apportioning yields 40 transects per reach, 28
on riffles, and 12 on pools. Sampling 10 particles per transects yields atotal of 400
particles. Thissample sizeis more in line with recommendations suggested by other

344



sources and may provide an precision for the Ds, particle size (in mm) of about +10%
(Rice and Church 1996b) (Section 5.2.3.4).

Another reason why a larger number of transects for each riffle and pool is recommended
is because it decreases the emphasis placed on an individual transect and its placement
within theriffle or the pool. Although some systemization can be attempted by alternately
placing transects at the upstream, center, and downstream sections of riffles and pools,
transect placement largely depends on operator discretion.

6.3.2 Sedimentary stratified sampling

If the purpose of the study is to characterize spatial heterogeneity of surface grains rather
than compare geomorphological units, sampling should be stratified by sedimentary units.
Sedimentary units are homogeneous streambed areas with no systematic spatial variation
of bed-material size, and are sometimes termed facies or patches. The size of a patch or
sedimentary unit is not fixed, but depends on the degree of spatia heterogeneity of the
streambed, and the number of different facies that the study wants to distinguish. Most
studies differentiate between 3 or 4 different facies, so that facies units are visually
distinguishable. Fig. 3.10 provides an example of a heterogeneous stream reach with
severa facies unitsin an aggraded C-type stream. A heterogeneous streambed with four
facies due to a heavy loading of large woody debrisis shownin Fig. 3.12.

There are two basic methods of delineating a heterogeneous streambed into homogeneous
sedimentary units: visual (Section 6.3.2.1 and 6.3.2.2) and statistical methods (6.3.2.3).
Examples of both are presented below. After the various sedimentary units have been
delineated, a sampling scheme needs to be established that is appropriate for the patch size
and the degree of homogeneity. Various sampling schemes for spatially segregated
sampling are explained in Section 6.3.2.4.

6.3.2.1 Visual delineation of sedimentary units (facies or patches) based on
estimates of percentile particle sizes

Experienced operators can become proficient in visually estimating particle-sizes (Shirazi
and Seim 1981; Platts et al. 1983), and thus in the distinction between areas of different
particle-size composition. However, the facies delineation process remains to some
degree subjective (Kondolf and Li 1992) because segregation of sedimentary units from a
heterogeneous surface reduces, but not eliminates heterogeneity. In addition, there are no
standards defining a meaningful degree of spatia variability within sedimentary units. For
best delineation results, it isimportant to spend some time walking the streambed to
become familiar with the particle sizes present on the bed and their spatial distribution.
Based on these insights, the user can devise criteriafor delineation of sedimentary units.
The reach length covered by the study should be sufficiently enough (20 stream widths or
more) so that each type of sedimentary unit occurs several times within the reach.
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Estimating the particle size of one or two percentiles

Criteriafor delineation of sedimentary units in gravel-bed rivers may be based on the
particle size of specified percentiles. The size of one large percentile, e.g., the Dzs, may
be sufficient in some deposits (Lisle and Madegj 1992), but in poorly sorted bed material,
different facies can be better discriminated on the basis of the size of several percentiles,
e.g., the Dgp and the Dgo (Hilton and Lisle, pers. comm.,1998). Each study needsto define
its own delineation criteriain correspondence with the site characteristics and the study
am. Example criteriafor delineation of sedimentary units (patches, facies) are provided
in Table 6.3.

Table 6.3: Example criteriafor delineation of sedimentary units (patches, facies).

Lide and Made (1992) Hilton and Lidle, pers. comm., 1998
D45 Sedi mentary Dsg Dgo Sedi mentary
(mm) unit (facies) (mm)  (mm) unit (facies)
<22 fine pebbles <16 <45 fine pebbles
22 - 64 coarse pebbles <16 >45 sand and pebbles
> 64 cobbles 16-45 any coarse pebbles
sand>25%  bimodal >45 any cobbles

For field application, the procedure of visual delineation and the subsequent segregated
sampling can be segmented into several steps:

1. Walk the reach and familiarize yourself with the different compositions of surface
sediments.

2. Determine the different facies and define delineation criteria appropriate to the site and
the study aim.

3. Apply the delineation criteriato distinguish between sedimentary units and mark the
boundaries with surveyors' flags.

4. Conduct pebble counts covering the entire sedimentary unit or only parts of it,
depending on the size of the sedimentary unit (see explanations below).

5. Survey the boundaries of all sedimentary units.
6. Prepare maps from the survey data.
7. Determinethe areal extent of each sedimentary unit.

8. Determine the percent area of each faciestype.
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9. Compute the reach-averaged particle size distribution by adding the area-weighted
particle-size distributions from each facies (Section 6.3.2.5).

The size of a sedimentary unit, or of the patches that comprise a unit, needs to be
sufficiently large to accommodate a pebble count. The minimum area needed for a pebble
count depends on the product of sample size and grid spacing. Grid spacing for pebble
counts should be at least as large as the Dy particle size, about 0.3 - 0.5 m in gravel-bed
rivers comprised of small boulders. Sample size depends on the desired precision and the
sediment sorting. Recall that a sample of about 400 particles from a homogeneous unit
determines the Dsp to within £0.12 to +0.15 ¢ (Section 5.2.2.3), or to within
approximately 10% in terms of mm-unitsin poorly sorted sediment. A 100-particle
sample nearly doublesthis error. If afaciesunit istoo small or too fine in bed-material
size for a pebble count, areal samples should be used.

6.3.2.2 Visual delineation based on a two-level characterization of particle sizes

Buffington and Montgomery (1999a) devised a two-level visua particle-size classification
based on the relative abundance of the major size classes (sand, gravel, and cobble) and on
the subsizes of the dominant size class. The delineation procedure is described in detail in
Section 4.1.3.5, but summarized below for convenience. Inalevel 1 delineation, the
operator visually estimates the relative abundance of the main three constituents of a
particle-size distribution. For example, a deposit with 10% sand, 60% gravel, 30% cobble
classifies as a sandy, cobbly Gravel facies (scG). In Leve 2, the operator characterizes
the size of the mgjor constituent (i.e., gravel in this example) more precisely and estimates
the percentage of three out of the five classifiers: very fine, fine, medium, coarse and very
coarse. The percentages of 20% fine, 50% medium, and 30% coarse gravel, for example,
classify the gravel part as fine-coarse-medium. The approach provides statistically
significant distinctions between particle-size distributions of facies and has the advantage
of being generally applicable to al facies.

Visual delineation and sampling procedure for spatially segregated sampling on
heterogeneous surfaces can be broken down into the following steps:

1. Conduct a preliminary reconnaissance of the stream reach, visually identifying the
facies (sedimentary units) according to the Level 1 and 2 classifications presented by
Buffington and Mongomery (1999a) (Section 4.1.3.5).

2. Do pebble counts in each facies type, using an appropriate grid spacing and sample
sizefor the desired precision. This may be performed with one sufficiently large,
facies-spanning pebble count per unit. Use areal sampling (Section 4.1.3.1 - 4.1.3.4)
for facies areas too small or too fine for a pebble count of adequate extent.

3. Plot the percent frequency of the three major constituents of each facies on atriaxial

diagram (Fig. 4.15in Section 4.1.3.5). Redefine facies criteriaif clusters of data
points plotted in the diagrams fail to distinguish between facies.
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4. Construct atextural map by surveying.

5. Compute the reach-averaged particle-size distribution by adding the area-weighted
particle-size distributions from each facies (Section 6.3.2.5)

6.3.2.3 Statistical delineation from systematic grid data

Visual delineation of sedimentary units can be problematic, particularly when the
streambed is submerged. In order to alleviate this problem, Crowder (1996) and Crowder
and Diplas (1997) suggest afour-step delineation procedure, whereby visual delineation is
augmented by a statistical delineation method in which hypothesis testing of sample
similarity or difference is applied incrementally over the reach by a moving window
technique. The stepsinvolved in hypothesis testing and the moving window technique
are:

1. Walk the reach to become familiar with the various sedimentary units and select the
subsampl e area and the number of particles collected in each subsample. The
subsample area (cell size) depends on the degree of heterogeneity of the bed and on
the Dnax particle size. For example, a Doy particle size of 0.3 m requires a minimum
grid spacing of 0.3 m. Crowder and Diplas (1997) suggest starting with asample size
of 20— 30 per cell, or of 25 - 36 if asquare cell-sizeis selected. Sampling 25 particles
froma0.3 by 0.3 m grid requiresagrid cell-size of 1.5 by 1.5 m. Sampling 36
particles with agrid spacing of 0.5 m requires agrid cell size of 3 by 3 m.

2. Spread asystematic grid of cells over the entire stream reach disregarding sedimentary
units. For example, the reach may be covered by a 1.5 by 1.5 m grid, and subsamples
of 25 particles are collected from each grid cell (Fig. 6.8). Do not use less than about
25 particles per subsample.

3. Compute the arithmetic mean particle size D, (in mm; Eq. 2.39, Section 2.1.5.3) as
well as the arithmetic standard deviation (variance s* (Eq. 2.56, Section 2.1.5.4) for
each cell. The values of Dy, and s* for each cell are plotted into a sketch map of the
reach (Fig. 6.8).

4. Check whether the selected sample size and the computed sample variance s? per grid
cell allow detection of a difference in the mean particle size between all adjacent grid
cells 1 and 2 using Fig. 6.9. The curvefor s, + s, = 100 in Fig. 6.9 indicates that 6
mm is the smallest difference detectable between two neighboring Dy, with a
subsample size of 30. Similarly, a6 mm difference between two neighboring D,
requires a sample size of 800 if the summed varianceis s,* + s,° = 3000. If the sample
size per grid cell istoo low, more particles need to be sampled in each grid cell.

5. Determine the boundaries between sedimentary units by performing statistical
hypothesis testing and the moving windows procedure explained below.
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Fig. 6.8 A grid is superimposed on the sampling reach, extending over facies boundaries. The upper
number in each grid section is the arithmetic mean particle size in mm, the lower number is the particle-size
variance §° obtained from a 25-particle pebble count collected in each grid section (here shown for 16 of the
grid sections).

6. Once the boundaries of sedimentary units are determined, combine all subsample
particles within the delineated sedimentary unit and do a particle-size analysis to
characterize the specified sedimentary unit.

Example 6.1:
Two subsamples with a sample size of n = 25 were collected in

neighboring grid cells. Subsample 1 hadaDpy =6 mm, andas; =
4.7. Subsample2had aDyn =14 mm, andas; = 8.8. s> +s,° =
99.5. ADi= |Dina - Dirp| = 14 - 6 = 8 mm. Thelinefor s,° + s,° =
100 on Fig. 6.8 b indicates that a sample size of 25 is sufficient to
detect a difference of 6 mm and thus adequate to detect an 8 mm
difference between Dy and Dpp.

Statistical discrimination

One method of determining a sedimentary boundary is to test whether the mean particle
sizes of two neighboring subsamples are statistically different. The neighboring Dy and
Dnp are different with a 90% confidence if the value for Z;, determined from
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Fig. 6.9: Minimum subsample size necessary to locate a specified difference in the arithmetic mean particle
size (mm); legend indicates lines of constant sums of variances s,” + s,° ranging from 1 - 100 (l&ft), and 100

- 4000 (right). (Reprinted from Crowder and Diplas (1997), by permission of the American Society of Civil
Engineers).

Dmi-D
le — JML (62)

n n;

exceedsthe value of 1.645 or islessthan - 1.645. s; and s, are the arithmetic standard
deviations of subsample 1 and 2 and n is the subsample size which is usually the same for
n; and n,. For a 95% probability, Z;, isincreased to 1.96 (See Table 5.1 for values of Z
for various probabilities). A statistical difference between neighboring D, confirms the
presence of a sedimentary boundary. The Z-statistic in EQ. 6.2 could be replaced by at-
statistic with ny + n, -2 degrees of freedom if the user wants to acknowledge the effect of a
small samples size. t-statistics for a 95% confidence limit arelisted in Table 5.2. t-
statistics for other confidence levels can be found in genera statistics books.

Example 6.2:

Two neighboring grid cells with a sample size of n =25 have a
D=6 mm, s; =4.7, and Dy = 20 mm, and s, = 8.8. Solving
Eq. 6.2 yields:
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which islarger than 1.96 (and larger than 2.00 if t-statistics are
used) and indicates a statistically significant difference in the D,
between the neighboring grid cells. Thus, subsamples 1 and 2
belong to different sedimentary units.

Eq. 6.2 could be applied systematically to all neighboring grid cells to locate sedimentary
boundaries. However, this discrimination procedure defines a sedimentary boundary
along the grid-cell margins, even if the true sedimentary boundary goes through the
middle of the grid cell. In order to facilitate a more accurate detection of the true
boundary location, Crowder and Diplas (1997) devised the moving windows procedure.

Moving window technique

To apply the moving window technique (Fig. 6.10), the area of sample 1 is covered by two
adjacent windows A and B which are incrementally moved towards the area of sample 2
over the areain which the boundary is expected. For each step, the difference between the
mean particle sizes Dma and Dyg is computed. The boundary between sample 1 and 2 is
located where the difference between D,,x and Dg reaches a maximum value.

The statistical delineation procedure confirms that sampled sedimentary units are

sufficiently homogeneous. Since each sedimentary unit may be of different size, areach-
averaged size distribution is computed from an area-weighted average (Section 6.3.2.5).

6.3.2.4 Strateqgies for sampling within delineated facies units

Segregated sampling schemes may be applied to sample the surface sediment of areach
delineated into different facies units. Four basic sampling types can be distinguished:

1. Reach spanning grid that covers all facies with the same grid patterns,

2. Different grid pattern to cover each facies unit;

3. Different sampling procedures on different facies (e.g., taking areal adhesive samples
in facies with particle sizes too small for pebble count or photographs in facies areas

too small for a pebble count (= hybrid sampling));

4. Different sampling procedures on one facies (e.g., taking a pebble count to sample
coarse gravel and areal adhesive samples for arepresentative sample of fine gravel);

5. Large reach with large facies units: sample extends only over asmall part of large
facies units and is collected at a representative location.
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Subsample 1 Subsample 2

1111111121 1111111|12222222(22222222
1111111121 1111111|1222222222222222?2
1111111121 1111111|12222222(22222222
Moving window A Moving window B
11111111 1j1j1 111111122 2 2 22 2|22222222
11111111111 111111|1|2 2 2 2 22 2|22222222
1111 11111j1j1 111111122 2 2 2 2 2|22222222
Beginning of position A | Beginning of position B

Ending position of A Ending position of B
1111111111 11111(1|22 2222 2(2(2222222|2
1111111111 11111(1|22 2222 2(2(2222222|2
1111111111 11111(1|22 2222 2|2(2222222|2

Differences of means 0, 0.13, 0.25, 0.38, 0.5. 0.63, 0.75, 0.88, 1, 0.88, 0.75, 0.63, 0.5, 0.38, 0.25

Fig. 6.10: Moving window technique: Two subsamples |:| that are statistically different and
surrounding material (top); Moving windows A and B in their starting position (center); Ending
positions of moving windows A and B and differences in their mean particle sizes at each increment between
beginning and ending position of windows. (Redrawn from Crowder and Diplas (1997), by permission of
the American Society of Civil Engineers).

These five methods of spatially segregated sampling are explained below. Selection of
one of the five methods depends on the characteristics of the facies units such as the Dyax
particle size, the sediment sorting, the size and orientation of facies units, and how clearly
distinguishable facies units are from each other.

1. Reach spanning systematic grid and allocation of sampled particle to respective
facies

The easiest method of spatially segregated sampling is to cover the entire reach with one
grid system and segregate the particles into the various facies unit during the sampling
process (Fig. 6.11) (Kondolf and Li (1992), and Kondolf (1997a). This method requires
that all facies may be covered by the same grid, which means that the grid size necessary
for the coarsest facies provides a sufficient number of grid pointsin each facies. It also
requires that the various facies units are easily distinguishable by eye.

If spatialy segregated sampling with a reach-spanning grid is possible, the operator

traverses the reach along transects that may span several facies units. Particles collected
along each transect are categorized according to their sedimentary unit, which means
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very coarse facies, whereas particles collected while the transect passes over the “ coarse”,
“medium” or “fine” facies are listed under the category “ coarse facies’, “medium facies”

or “finefacies’.
Fig. 6.12: Spatially segregated sampling using a different grid for each facies unit (same legend as Fig.

particles collected while the transect traverses the “very coarse” facies are allotted to the
When sampling areach delineated into sedimentary units, it may be necessary to select a
separate grid pattern that variesin grid size and orientation for each unit (Fig. 6.12). The
coarse facies, for example, may require awider grid spacing than the fine facies, or the
6.11).

covered by the same grid. Examples of allocating sampling points to facies unitsis given for some of the

Fig. 6.11: Spatially segregated sampling using a systematic reach-spanning grid. All facies units are
transects. Equal shading of the circlesindicates allocation to the same facies.

2. A separate grid system covers each facies unit

353



poor sorting of particle sizesin one facies may require alarger sample sizeto attain a
specified precision than a facies with well sorted sediment. Directional orientation of
facies units may warrant still another grid orientation.

3. Small sedimentary units. pebble counts or areal samples

Some delineated units may be substantially smaller than the area needed for pebble
counts. In this case, the user may either collect pebble counts using several grids, each
dlightly shifted relative to each other (Section 6.3.1.2), or use areal samples (Fig. 6.13).
Areal samples, and specifically adhesive sampling (Section 4.1.3.2) may be useful if the
surface sediment is mostly finer than about 15 mm, and the user wants to know an exact
frequency distribution of the fine gravel and sand. A small, but coarse facies unit may be
analyzed by photo sieving (Section 4.1.3.3) using photographs that cover the entire facies
unit.

Facies units
Very coarse Mod. coarse Mostly fines with
some coarse
Sampling scheme [
e O ] 1] .
Photographs Shifted grids Adhesive

Fig. 6.13: Small sedimentary units: shifted grids, photographs, or adhesive samples are applicable.

Recall that particle-size distributions of areal samples need to be converted into equivalent
grid-by-number particle-size distributions before comparison with pebble count data
(Section 4.3). After the statistical conversion of areal samplesinto equivalent grid-by-
number samples, particle-size distributions from each facies are area-weighted and
summed to yield areach-averaged particle-size distribution (Section 6.3.2.5).
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4. Poorly sorted facies units containing fine and coarse gravel: hybrid sampling

If a sedimentary unit has a wide particle-size spectrum with both a large amount of fine
gavel and also coarse gravel and cobbles, both adhesive areal samples and a pebble count
may need to be collected to representatively sample that facies (hybrid sampling, Diplas
1992) (Fig. 6.14). An adhesive sample (Section 4.1.3.2) can representatively sample fine
gravel and sand and provide a more accurate analysis of fine gravel and sand than pebble
counts, whereas the pebble count can characterize the coarse part of the distribution better
than an areal sample. The particle-size distribution for the entire facies unit is obtained
from a sample combination procedure (Section 4.4).
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Fig. 6.14: Hybrid sampling on a poorly sorted facies unit with mostly fine but also some coarse gravel: Grid
sample for arepresentative sample of the coarse gravel, and areal (adhesive) samples () for @presentative
samples of the fine gravel and sand.

5. Long reach with large and reoccurring facies units: sample extends only over a small
part of large facies units

A sampling project may have to be conducted in alarge stream about 100 m wide and
over along reach where 20 or more channel widths (4 riffle-pool sequences) resultin a
reach length of 2000 m. The total streambed areais 200,000 m?. If the stream has four
facieswith areas of 20,000, 40,000, 60,000 and 80,000 m?, and each facies occurs 4 - 6
times, then the size of individual facies may range between 4,000 (40 by 100 m) and
30,000 m? (150 by 200 m). It may still be feasible to collect a 400-particle pebble count
from a 4000 m? unit, covering the entire facies unit with 20 transects and sampling in 2.5
m step spacing, but total coverage becomes inconvenient for large facies units. Inthis
case, it seems reasonable to restrict a pebble count to arelatively small area(e.g., 20 by
20 m) and to select a representative area within each or almost each of the facies units
(Fig. 6.15) for the pebble count (some judgement isrequired). Facies A, for example,
may occur four timesin the reach, and a 100-particle pebble count may be collected from
each of the four areas of facies A, yielding atotal sample size of 400 for facies A. Pebble
count data from all four areas of that unit are eventually combined into one sample.
However, each pebble count may be analyzed separately in order to evaluate the similarity
between the four units. The same process is repeated for the facies units B, C, and D.

If a certain facies occurs numerous times, it may not be necessary to collect a sample

from each unit belonging to that facies. A few units most representative of that facies
type are
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20 widths = 4 riffle-pool sequences = 2000 m

Facies units Loiiiiino
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bed pebble count

Fig. 6.15: Spatially segregated sampling in along reach with large and reoccurring facies units: each pebble
count covers only part of afacies unit.

then selected for sampling. Also, some units might be so large that they cannot be
covered by one large grid count. In that case, several smaller grid counts may be used,
each grid covering only afraction of the total sedimentary unit (Lisle and Madej 1992).
The total number of pebble countsto be performed on a sedimentary unit of a specific
type should correspond roughly to the percentage area covered by that faciestype. If, for
example, the cobble, coarse gravel, and fine gravel facies comprise 30, 50, and 20% of
the total reach area, then 30, 50, and 20% of all pebble counts are collected from cobble,
coarse gravel, and fines gravel facies, respectively. The reach-averaged particle-size
distribution is computed from area-weighted particle-size number or percentage
frequencies of each unit (Section 6.3.2.5).

Example 6.3:
For a Dy OF Dgs particle size of 0.3 m, and a sample-size

reguirement of 400 particles, the minimum sampling areais 400
x 0.3 m? = 36 m? (size of asmall classroom). Table 6.4 provides
minimum sampling areas of sedimentary units for various
sample sizes and D, particle sizes, anticipated absolute errors
in particle size g-units (see Table 5.6), and relative errors as
percentage based on mm-units (based on Fig. 5.8).
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If the facies areais too small to accommodate grid spacing for a particular D particle
size, and sample size required for a specified precision, grid spacing and sample size can
be reduced, but either reduction decreases sampling precision.

Table 6.4: Minimum sampling area for various Dy« and sample size, and
sampling errorsin gand % mm.

Dimax (M)
0.1 0.3 10
Minimum samplingarea  Sample size error in terms of
m? m n @units % mm
1 9 100 100 + 0.30 +17
4 36 400 400 + 0.12 +10
10 90 1,000 1,000 + 0.07 4

6.3.2.5 Area-weighted reach-averaged particle-size distribution from stratified
sampling

To compute the reach-averaged bed-material size distribution from a stratified sampling
scheme, each sedimentary (or geomorphological) unit (Section 6.3.2) (e.g., A, B, and C)
should be surveyed and mapped. The fraction of the total areafor each of the unitsisthen
computed (Ay, + By, + Co, = 1). After the particle-size frequency distributions fy, fg, and fc
are established for each unit, the reach-average size distribution f; ,, for theith size classis
obtained by multiplying the frequency of particles of the ith size class f; o from unit A by
the percent total area Ay, comprised in unit A. Thismultiplication is repeated for all
geomorphological (or sedimentary) units and frequencies are added to obtain the area-
weighted reach-average number frequency f; m.

fim =fia- Ap+fig: Bytfic: Cy (6.3)

The processis then repeated for all size classes to obtain the area-weighted particle-
number frequency distribution. The percentage frequency distribution fy, ,m, and the
cumul ative frequency distribution Zfo, ,, are then computed (Table 6.5). Alternatively,
area-weighting can be deferred and applied to the percentage frequenciesfy,; from all
units to obtain area-weighted percentage frequencies fy, m,; -

foomi = fomi = Age+ Topi - Bop+ fopi - Cos (6.4)

The computations are repeated for all size classes and fo,,; 1S summed to obtained a
cumul ative frequency distribution Zfo, ,pi. Both methods provide almost identical
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cumul ative frequency distributions (compare the two shaded columns Xfy, ,; in the
example computation in Table 6.5).

Table 6.5: Original frequency distributions f; of pebble counts in geomorphological or sedimentary units A
(57%), B (27%) and C (16% of total streambed area), and difference between cumulative frequency
distribution derived from area-weighted number-frequencies >fy, m; and area-weighted percentage frequencies
>foomi- All values larger than 10 are rounded to the nearest integer value.

area-weighted reach-average area-weightedreach-average

D; fi fawi fmi foomi Zfoemi fooani Toomi Zfopmi
(mm) A B C A B C A B C

<2 30 25 10 17 6.8 16 26 6.0 6.0 40 16 04 59 5.9
2 1 1 1 06 03 02 1.0 0.2 6.2 01 01 00 o0.2 6.2
28 2 0 0 1.1 00 00 1.1 03 6.5 03 00 00 03 6.4
4 6 4 1 34 11 02 47 11 7.6 08 03 00 11 7.5
56 7 5 1 40 14 0.2 55 13 8.9 09 03 00 13 8.8
8 8 6 3 46 16 05 6.7 16 10 11 04 01 16 10
11.3 13 9 6 74 24 10 11 25 13 1.7 06 02 25 13
16 25 15 9 14 41 14 20 4.6 18 33 09 04 46 18
226 65 27 15 37 73 24 47 11 29 86 17 06 11 28

32 87 62 35 50 17 56 72 17 45 12 39 14 17 45
45 91 9 57 52 26 91 87 20 66 12 59 23 20 65
64 53 83 81 30 22 13 66 15 81 70 52 32 15 81
0 23 57 96 13 15 15 44 10 91 30 36 38 10 91
128 9 26 49 51 70 78 20 47 96 12 16 19 48 96
180 7 10 20 40 27 32 99 23 98 09 06 08 23 98
256 2 5 10 11 14 16 41 10 99 03 03 04 10 99
360 1 1 8 06 03 13 21 05 100 01 01 03 05 100
512 0 1 3 00 03 05 08 02 100 00 01 01 0.2 100

total: 430 432 405 245 117 65 427 100 57 27 16 100

6.4 Spatially integrated volumetric sampling (reach-averaged)

A reach-averaged mass-based particle-size distribution may be obtained by sampling an
entire reach with a spatially integrated methodology or by delineating the reach into its
sedimentary units which are then sampled separately (spatially segregated). Spatially
integrated sampling means that sampling integrates over all sedimentary units (or any
other distinguishable streambed units such as geomorphological units or habitat units)
instead of sampling each unit separately (i.e., spatially segregated). Whether spatially
integrated sampling is preferable to spatially segregated sampling must be determined for
each stream and study situation. Criteriafor making this decision will be outlined.
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Spatially integrated or segregated sampling for a reach-averaged particle-size
distribution?

Spatially integrated volumetric sampling is best used for computing the reach-averaged
particle size of relatively homogeneous reaches in which the number of sampling
locationsisrelatively low. If heterogeneous reaches are sampled spatially integrated, the
number of samples needed to cover the reach is relatively high which leads to a large total
sample mass. Heterogeneous reaches are therefore better sampled using a spatially
segregated approach (Section 6.5.2.2). Within the delineated sedimentary unit, bed
material is comparatively homogeneous. Thisleadsto arelatively small number of
samples for each unit and to arelatively small mass for each sample. Therefore, the total
mass required for each sedimentary unit remains rather small.

Note, however, that the process of delineating the reach into its sedimentary units and the
survey to measure the areal extent of each unit islabor intensive aswell, particularly if
the reach is comprised of alarge number of relatively small sedimentary units (patches).
The increased work effort from delineation and surveying offsets some of the work effort
rendered unnecessary by the reduced sample mass of spatially segregated sampling.

Thus, on moderately heterogeneous reaches or patchy reaches comprising numerous small
facies units, the total work effort may actually be similar for spatially integrated and
gpatially segregated techniques. Finally, spatially integrated sampling is also used when
the presence of facies unitsisirrelevant for the study.

Volumetric samples may refer to sediment from the armor layer, the subarmor, the
subsurface, or the vertically unstratified bulk sediment (Fig. 4.1). Because spatialy
integrated sampling is used for reaches that are relatively homogeneous, or that have
small patches, the user needs to evaluate the degree of spatial heterogeneity within the
reach. When sampling the armor layer or the vertically unstratified bulk sediment, the
surface portion of the sediment to be sampled is visible to the observer. However, when
the sampling target is the subarmor or subsurface sediment, its degree of spatial
variability can only be inferred from the degree of spatial variability of the surface
sediment. Inference is possible based on the observations by Lisle and Hilton (pers.
comm. 1998) and Buffington and Montgomery (1999 a and b) that surface and subsurface
particle-size distributions are often related in a positive, linear way (Section 6.1.6.2). Fine
surface sediment islikely to have fine subsurface sediment beneath, whereas coarse
surface sediment islikely to have coarse subsurface sediment. The degree of subsurface
homogeneity or heterogeneity, and thus the subsurface sampling scheme cannot be
inferred from the surface sediment if a post-flood surface deposit (usually of fines) alters
the flood-generated relation between surface and subsurface sediment size.

The following sections explain sampling schemes for spatially integrated volumetric
sampling. Sampling schemes should be discussed together with sample-mass
requirements because the precision obtained from a given sample mass may differ
depending on the sampling scheme applied. Thus, the topic of sample size recurs
throughout Sections 6.4 and 6.5.
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6.4.1 Sampling atruly homogeneous reach

A truly homogeneous sediment deposit has very little or no variability between samples
collected at various locations within the reach. Thus, al sampling schemeslead to the
same sampling result. The most practical approach to sample atruly homogeneous reach
isto collect one or afew unbiased samples that suffice for a predetermined precision
requirement at random location(s) within the reach.

Total sample mass required for a homogeneous reach depends on a preset precision
requirement, and may be determined from a relation between sample mass and error
(e.g., Ferguson and Paola (1997), Fig. 5.22 or Egs. 5.62 and 5.63 in Section 5.4.3.2). For
an assumed normal distribution in terms of ¢ sample mass for a specified precision
depends on the general coarseness of the sediment, the percentile of interest, and most
markedly on sediment sorting (Section 5.4.3). Estimates of the @, and the bed material
sorting (i.e., the g and ¢4) are obtained from a pilot study. If no particular underlying
distribution type can be assumed for the parent distribution, sample mass may be
computed from the empirical and mathematically ssmple recommendations by Church et
al. (1987) that are based on the Do particle size (Section 5.4.1.1). The 0.1% criterion,
for example, determines total sample mass my; as 1000 times the Mass Mpmax Of the Dy
particle. A pilot study then only needs to determine the D, particle size for the reach.
When applied to a normal distribution, the 0.1% criterion provides a precision of at least
+0.4¢for al percentiles up to the Dgs, even for poorly sorted sediment with s< 2. Sample
mass can easily amount to hundreds or thousands of kg or more in coarse gravel-bed
streams, even if the less stringent 1% criterion of my; = 100 Mpney IS applied.

6.4.2 Sampling schemes for spatially integrated sampling of heterogeneous
reaches

The statistical precision, aswell as the work effort of a sampling study is affected by the
gpatial patterns with which samples are collected within a reach (Smartt and Grainger
1974). The sampling pattern used for spatially integrated volumetric sampling include:
(1) random locations for volumetric samples, (2) volumetric samples at systematic grid
points, (3) volumetric samples at random locations within systematic grid cells, and (4)
volumetric samples at the grid points of several grid systems overlaying each other (two-
step approach) (Fig. 6.1). Application of these sampling schemes to heterogeneous
reaches in coarse gravel-bed streams are discussed below.

6.4.2.1 Random sampling locations

Random sampling is appropriate for homogeneous streambed areas in which the location
of sampling does not influence the outcome of the sampling result. However, spatial
homogeneity is rare in mountain gravel-bed streams. Sampling at random locationsis not
recommended for heterogeneous reaches. One reason is that the irregular spacing of
random sampling may fail to include all stream locations in a representative way. Small
facies areas, in particular, are likely to remain unsampled. Thus, random sampling tends to
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require more samples than systematic sampling to arrive at the point where further
sampling leads only to minor improvements in precision. Analyzing volumetric samples
collected on a spatially heterogeneous large gravel bar, Wolcott and Church (1991) found
that random sampling resulted in a different particle-size distribution than systematic
sampling and required five times more samples for the same sampling precision.

Another reason why random sampling is not recommended in coarse gravel- and cobble-
bed streamsis that random sampling is not as versatile as systematic sampling. Samples
taken at random locations cannot be used for a retroactive delineation of the streambed
areainto facies units, nor can random samples collected from heterogeneous beds be
combined for joint analysisin one large sample (Section 6.4.4.3 and 6.4.4.5). A joint
analysis of subsamplesin one aggregate sample requires that all samples represent an
identical portion of the streambed area. Random samples collected from heterogeneous
beds are also not usable to assess the sampling precision in atwo-stage approach (see
below).

6.4.2.2 Sampling the reach at systematic grid points

When applying a spatially integrated sampling scheme to a heterogeneous reach, a good
strategy isto cover the reach by a systematic grid and to collect volumetric samples at
each grid intersection. Fig. 6.16 shows an example of a systematic grid that coversthe
reach with 360 grid points. Sampling a heterogeneous reach at systematic grid points
ensures that all areasin the reach are representatively included in the sample.

Faciesunits - - oc - | P A

fine medium coarse very coarse

Fig. 6.16: Spatially integrated volumetric sampling (reach-averaged sampling) of a heterogeneous reach with
small sedimentary units at grid points. A grid with 360 points or 324 grid cells covers the reach.

However, systematic sampling may not correctly represent sediment from units that are
smaller than the grid size. Small sediment units are underrepresented if no grid points
fallsinto that area and overrepresented if a grid point happensto fall within the area.
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Misrepresentation can be avoided by choosing a grid spacing to match the smallest
sampling units on the bed.

6.4.2.3 Random placement of sampling locations within grid cells

In a stream reach with linear structural streambed elements, such as transverse ribs,
berms, or sand-filled micro-channels, some randomization in sample placement is
preferable to a strict placement at grid points. Randomization avoids sample locations
that align with linear bed elements. A moderate randomization of sampling locations can
be achieved by sampling at a random location within the area outlined by regularly-
shaped and even-sized cells (Fig. 6.17) (Wolcott and Church 1991). The outline of cells
does not need to correspond to the boundaries of sedimentary or geomorphological units.
Random placement of sampling locations into very large grid cells approaches the
outcome of random sampling (Section 6.4.2.1). Thus, the cell size should not be too
large. It isalso possible to introduce more regularity into the sample point location by
using algorithms. An example isto place the sample locations of the first row of cells at
an equal distance x; from the left boundary of al cellsinrow 1. Likewise, al sampling
locations for the second row of cells are placed at an equal distance x, from the left cell
borders. The y-coordinate of the sampling locations is determined accordingly. All
sampling locations in the first column of cells are placed at an equal distance y; from the
top of the cells, and at an equal distance y, from the top for all cellsin the second column
(Smartt and Grainger 1974).

% Sand-filled mircochannels

Fine and medium gravel

EE% Cobble berm

'/ Transverse ribs of coarse
. gravel and cobbles

° Sampling location
within grid cell

Fig. 6.17: Sampling at random locations within systematic grid cells.
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If linear bed features are absent, Wolcott and Church (1991) found that sampling at
systematic grid points and sampling at random locations within the same number of
systematic cells produced similar reach-averaged particle-size distributions with similar
sampling precision.

6.4.2.4 Two-stage sampling using overlaying grid systems or a small grid pattern

Two-stage sampling is used to compute the statistical difference or precision between
repetitive samples collected from the same population (Sections 5.4.2.1 and 6.4.4.4). For
gpatially integrated sampling on a heterogeneous bed, the requirement that all samples
come from the same population means that each sample should represent the same degree
of spatial variability. Thisdemand isbest achieved by sampling the reach using several
grid systems, each with the same size and spacing, but each dlightly shifted in position
against the other grids. The sample grid systems may be laid out and sampled
sequentially until a desired sampling precision has been attained. A more efficient
alternative may be to use a pilot study to estimate the number of repeated samples needed
to obtain apreset precision. If, for example, the pilot study suggested that each
volumetric sample collected from 200 grid points should be repeated about 5 times,
repetitions can be performed by laying out a small grid pattern of 1,000 points from the
start. Individual samples are then allocated either randomly or systematically into one of
five sets. Care must be taken to avoid any systematic difference between subsamples,
which may occur when a streambed shows fining or coarsening towards one bank or in a
downstream direction.

6.4.3 Number of sampling points for systematic samples of heterogeneous
reaches

After the patterns for spatially integrated sampling have been determined, the user needs
to determine four factors that relate to sample mass:

Number of sampling pointsin the reach (Sections 6.4.3.1 and 6.4.3.2) ,

Mass of sediment to be collected at each sampling locatior .

Total mass of sediment to be collected in the reach, and Sections 6.4.4.1 - 6.4.4.3)
Number of replications of the total sample (Section 6.4.4.4).

PwODNPRE

The number of samples required for an accurate characterization of the particle-size
distribution in the reach depends on the degree of spatial variability within the reach.
Purely statistical criteriamay be applied to compute this number when sampling alarge
areain adry streambed (e.g., 160 m by 1,000 m or 400 m by 400 m) where the resulting
number of sampling locations may amount to 100 or more. Geometrical and ecological
criterianeed to be considered in smaller streams. When sampling in a mountain stream
10 m wide with most of the bed inundated by flow, sampling space becomes not only
restricted from a geometrical standpoint, but also from an ecological one.
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6.4.3.1 Large streams, no space limitation

Based on their study on a large and heterogeneous gravel bar of approximately 160,000
m?, Wolcott and Church (1991) suggested that 100 to 300 samples collected from even-
spaced sampling points may be appropriate for an unbiased particle-size estimate of
reach-averaged subsurface sediment in many gravel-bed rivers. The number of sampling
locations can be determined for a specified reach by collecting a number of subsamples.
The standard deviation of the subsample mean sy, is then computed for an increasing
number of subsamples (n, to ny) and plotted. Asthe number of subsamplesincreases, the
standard deviation of the subsample means decreases. |deally, the plotted relation of

standard deviation versus sample size follows the function sp,, = f (1/\/?1). The graph of
this curve decreases steeply for small sample sizes and flattens for larger sample sizes
(Fg. 6.18 and Section 5.4.2.2; Figs. 5.10 and 5.11 in Section 5.2.3.4). At some position
along the curve there isa point at which a further increase in the number of samples does
not significantly improve the sampling precision. This point defines the number of
sampl es ny: Needed to characterize the reach as the optimum trade off between sampling
effort and sampling precision.
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Fig. 6.18: Decrease of the standard deviation of the mean particle size sp, for subsamplesincreasing in
number from n, to N, Nyt IS the sample size at which a further increase in sample size does not lead to a
further significant increase in sampling precision and the optimal sample size in the trade-off between
precision and work effort.

When performing an analysis with only one data set, the resulting curve islikely to be
jagged (Fig. 6.18). A smooth curveisonly obtained if the standard deviation for each
subsample size is computed for a large number (approximately 50 - 200) of repeated
subsamples. This number of repetitionsis only practical with computer sampling. When
using only one data set, the user might want to fit a regression curve through the data
pointsto better visualize the optimal number of samplesfor areach (Section 5.4.2.2).
However, the smoothed curve indicates an unduly high precision.
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6.4.3.2 Small streams, space limitation for sampling

Another aspect to consider when determining the grid size for spatially integrated
sampling isthe areal extent of each volumetric sample in relation to the size of the reach.
Assume a mountain stream with most of the streambed inundated by flow and that
volumetric samples are collected with the plywood shield (Section 4.2.4.7). Each sample
then covers (and disturbs) a streambed area of approximately 0.5 m?. If such samples
were spaced 5 m apart in a stream 10 m wide, and the reach was 50 m long, 20 samples
could be collected per reach. The combined area of all samplesis 2% of the reach (10 m?
of 500 m?). With respect to statistical precision, 20 samples may be low. From an
ecological standpoint, the damage caused by 20 samples may be high. The user must
decide where to place the emphasis.

6.4.4 Subsample mass at each grid location and total sample mass within
the reach

The mass of individual samples taken within the reach may be computed using either an
empirical or an analytical approach. The empirical approach presented by Wolcott and
Church (1991) makes no assumptions regarding the bed-material distribution-type and is
based on the sample mass criteriaby Church et al. (1987) (Fig. 5.14 in Section 5.4.1.1).
Ferguson and Paola (1997) present an analytical approach that assumes that the bed
material follows anormal distribution in terms of @-units. The analytical approach allows
computing sample mass for a specified level of precision around a given percentile (Fig.
5.22 or Eq. 5.62), but requires prior knowledge of at least one percentile of the
distribution and the sorting coefficient of the bed through a pilot study.

6.4.4.1 Full sample at each grid location in well sorted, fine to medium gravel
beds

One means for determining the sample mass needed for an unbiased sample (Fig. 5.14) or
for a preset precision requirement (Fig. 5.22) isto select a stream location that best
represents the average particle-size distribution of the bed. Sample mass that satisfies a
predetermined precision is then computed for that location and collected at each of the
100 or so grid locations within the reach. Collection of “full” samples at all grid points
may be feasible in streams with fine gravel where akg of sediment is adequate for a
specified precision, but not for poorly sorted gravel-bed streams.

6.4.4.2 Reduction of sample mass at each grid location in poorly sorted gravel-
and cobble beds

When sampling in poorly sorted, coarse gravel- or cobble-bed streams, the mass required
for a single sample alone can amount to hundreds or thousands of kg (Fig. 5.14 or Fig. 5
22). If such asampleis collected at each of the 100 or so grid points per reach, the total
mass of sediment collected in areach approaches several tens or hundreds of tons, a mass
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that is usually impossible to collect, particularly in mountain gravel-bed streams. In order
to facilitate collection of a manageable sediment sample, the sample mass needs to be
reduced. To the extent possible, the reduction needsto be carried out such that the total
sample mass collected remains statistically meaningful. Reducing the number of grid
points is not recommended because this may lead to unrepresentative samples of the
various faciesin the reach. A better approach isto reduce the sample mass collected at
each sampling point. Several approaches may be used.

1. Exclusion of the largest particle sizes from the analysis (truncation at the coarse end,
Section 5.4.1.4, acceptable and even recommended by some if the study focuses on
fines),

2. Acceptance of alarger error (see discussion of sample size, e.g., Fig. 5.22 in Section
54.3.2),

3. Limitation of the analysisto the Dy, particle-size for which fewer sample are
reguirement than for higher or lower percentiles; see Fig. 5.22 in Section 5.4.3.2), and

4. Collection of individually small samples (grab samples) that are combined to one
composite sample that is then statistically unbiased and “accurate”.

Approaches 1 - 3 have been already been discussed. The mass of the individually small
samples (Approach 4) can be computed based on either empirical sample-mass
recommendations (Section 6.4.4.3) or analytically (6.4.4.5). Both approaches may yield a
different grab sample mass.

6.4.4.3 Individually biased grab samples, empirical approach

Instead of collecting large and statistically valid samples at each grid location, Wolcott
and Church (1991) proposed collection of individually small grab sampleswhile
maintaining the number of sampling locations. The reduction of sample mass at each grid
location isjustified on the basis of two arguments. (1) If the entire reach is sampled at
regular grid points (Section 6.4.2.2) or at random locations within regular grid cells
(Section 6.4.2.3), each sample represents the same fraction of the total sampling area.
Since all samplesrepresent an area of the same size, all particles collected in areach may
be combined into one large sample for joint sieving to obtain a reach-averaged particle-
size. (2) If al volumetric samples are reduced by an equal amount, the sample mass per
grid point may be substantially reduced to the size of a grab sample and still remain
unbiased with respect to total sample mass. Based on the empirical 1%-criterion by
Church et al. (1987), that makes no assumptions about the underlying distribution type,
Wolcott and Church (1991) recommend the following two sample mass criteria for
determining the grab sample mass:

1. Each grab sample must encompass at least 1% of the total sample mass required for
an unbiased sample of the entire reach.

2. Each grab sample must be at |east as large as the mass of the largest particle present in

the reach (D) t0 ensure a potentially equal mass of all grab samples. The sampling
device used must not hinder collecting a particle of near D Size.
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Example 6.4.
A pilot study has estimated a subsurface D, particle size to be

256 mm, which is approximately the Dgg particle size of a
sediment with a Dsy of 22.6 mm and asorting of s=1.5. A
spherical or ellipsoidal quartz (os = 2.65 g/lcm®) particle with ab-
axis length of 256 mm has a mass m, of approximately 23 kg (m,
=6 b* py).

Each grab sample should have a mass of at least 23 kg, the mass
of the D particle in order to give each grab sample the chance
to contain at least one D, particle. 23 kg of sediment fillsa
heaping household pail.

If the Doy particle massis not to exceed 1% of the total sample
mass (1% criterion for coarse gravel beds, Section 5.4.1.1), total
sample mass allotted to a 100-point grid system is100 - 23 kg =
2,300 kg (= 1.2 m* or 12 cubic feet). If 200 samples are needed to
cover the spatial variability of the reach, total sample massis 200
- 23 kg = 4,600 kg.

Assume, atwo-stage approach (see next heading) determined that
the 200 grab samples need to be repeated 5 timesto arrive at an
acceptable level of precision, total sample massfor thereachis5
- 4,600 kg = 23,000 kg. Results of these computations are
presented for three Dgg particle sizesin Table 6.6.

Table 6.6: Grab sample mass mg (kg) suggested by Wolcott and Church (1991) according to the 1%
criterion by Church et al. (1987): my = Mpmax. 200 grab samples are collected in the reach, amounting to a
sample size of 200 mg. Five repetitions yield atotal sample mass of my; = 1,000 mg for the reach.

Particles size of Grab sample Combined mass for 200 Tota sample mass for
5. 200
Dimax OF Dgg (Mm) Mass Mg grid points (200 ms) grid points (1,000 my)
(kg) (kg) (kg)
114 2.0 412 2,060
225 23 4,600 23,000
572 260 52,000 260,000

The sample mass required for one grab sample may exceed the capacity of the sampling
device which isafew kg for a pipe sampler (Section 4.2.4.5), and nearly 50 kg for a
barrel sampler (Section 4.2.4.6). Inthiscase, alarger sampling device should be used,
such as the plywood shields (Section 4.2.4.7). If several physical samples must be
combined to obtain one grab sample, care must be taken that the device facilitates
collecting a particle of Do Size. Truncation of the sample at a certain large particle size
(Section 5.4.1.4) may be unavoidable.
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6.4.4.4 Determining sampling precision from two-stage sampling with overlaying
arid systems

When taking individually small grab samples, information on sampling precisionis
obtained from a two-stage sampling procedure that compares several repetitions of the
combined sample from the reach (Sections 5.4.2.1, 5.4.2.2 and 6.4.2.4).

Example 6.5:
The study objective isto determine the D5y particle sizeto a

precision of + 20%. The number of sampling locations was
estimated at 50. Fve sets of 50 grab samples of 40 kg each were
collected and jointly sieved. The five values of the Dg, particle
size are 60, 70, 80, 90, and 100, mm with a mean Ds,, of 80 mm,
and a standard deviation spgs Of 15.8 mm. The precision of those
5 samples may be computed either with the general sample size
equation (Eqg. 5.13 for absolute error) or with the equation given
below for relative error. Thet-valuefor n=5is2.78 (Table 5.2).

n= 10(/2n1 Cvg @1 a2nl E
€y © Dsom

/8- 15.8
= g;O.Z 80 g =7.508

Since the computed sample size of 7.5 issmaller than 5, the
computation is repeated with at-value for 6 =2.57, yielding n =
6.4. Another iteration is not necessary, because even if at-value
for 6.2 was used and yielded aresult closeto n = 6.2, sample size
isusually rounded up to the next integer value, whichiis7. Total
grab sample mass necessary to estimate the Dg, particle sizeto a
precision of + 20% amountsto 7 - 50 - 40 kg = 14 metric tons,
orca 7 m°.

6.4.4.5 Individually unbiased subsamples for assumed normal distributions

The sample mass for individual grab samples determined in Section 6.4.4.3 and Example
6.4 (Mss = Mpmax, aNd Mg = My /100) was geared towards creating atotal sample that is
unbiased towards the D Or Dgg particle size. This sample-mass computation is free of
any assumptions of an underlying distribution type. Table 6.6 illustrates that the total
sample mass amounts to tons and hundreds of tons when the D, particle sizeisin the
boulder range. The sample mass for grab samples can be smaller than computed in Table
6.6 and Example 6.4, if the sampling objective requires an accurate determination of the
D5 particle sizesonly, and if a pilot study revealed that a normal distribution of particle
sizesin @units might be assumed.
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For underlying normal distributions, Ferguson and Paola (1997) provide a sample mass
equation that provides bias avoidance for specified percentiles. If the study objectiveisto
determine the Dg, Size, bias only needs to be avoided in the Dg, particles size and the
subsample mass can be accordingly small. By contrast, if the reach-averaged Dgs is of
interest, each subsample should be sufficiently large to satisfy the criterion for an
unbiased Dgs particle size. The subsample mass for bias avoidance and the total sample
mass required for the reach is computed in Table 6.7 for three particle-size distributions.
Each of the distributions has a Dsy of 22.6 mm, but the sorting coefficients are 1, 1.5, and
2 ¢, so that the Dg4, Dgs, and Dgg particle sizes are different for each of the three
distributions. Collecting individually unbiased samples has the advantage that samples
may be compared among themselves and may be used for retroactively delineating facies
units (Crowder and Diplas 1997, Section 6.3.2.3).

Table 6.7: Three normal particle-size distributions (in ¢) with equal Ds, particle sizes of 22.6 mm, but
sorting coefficientsof s=1, 1.5 and 2. Total sample mass (M, kg) required for atolerable absolute error of
+ 0.3 ¢for the Dsp, Dgs, Dgs, and Dgg particle size as well as the subsample mass necessary for bias avoidance
in the Dgg, Dg4, Dgs, and Dgg. Number of sampling points is computed from the ratio my/ms.

Tota sample mass Subsample mass Number of sampling
Per-  Particlesize Myt (kg) for acceptable M (kg) required for POINts Mo/ Mg
cen- (mm)* absolute error + 0.3 ¢* bias avoidance® for

tile s=1s=15s=2 s=1 s=15 s=2 s=1 s=15 s=2 s=1 s=15 s=2

Dsy 226 226 226 18 99 336 0.32 048 0.64 58 207 525
D¢ 45 64 90 146 224t 19.2t 2.6 104 38 57 215 526
Dgs 71 125 221 528 17.6t 304t 9.9 80.0 592 54 220 513
Dgo 114 255 572 224t 136t 5100t 40 670 9.9t 56 203 515

* Computed from Eqg. 5.58 in Sect. 5.4.3. #Values read off and determined from Fig. 5.22 b in Section 5.4.3.2. §‘Values
read off and determined from Fig. 5.20 and Eq. 5.60 in Section 5.4.3.1.

6.4.4.6 Comparison of subsample masses and total sample mass computed with
two different approaches

The grab-sample mass computed by Wolcott and Church (1991) (Table 6.6) for bias
avoidance of the Dgg particle size of the total sampleis sufficient to avoid biasin the Dgg
particle size when applied to subsamples from normally distributed deposits (Table 6.7).
The total sample mass computed by Wolcott and Church (1991) (Table 6.6) which
assumed the necessity of 200 grid points and 5 repetitions of the 200-grid (atotal of 1,000
grid points) sufficesfor ax 0.3 gprecision of approximately the Dgs particle size. Thus,
both approaches yield comparable results for high percentilesin the Dgg to Dgs region.

The approach by Ferguson and Paola (1997) determines a much smaller subsample mass
when central percentiles are the focus of the study. If the Ds, or the Dg4 are the only
percentiles of interest, subsample mass may be reduced to 0.6 or 38 kg (Table 6.7), if a
deposit sorting of s= 2 and anormal distribution are assumed. Thisisa substantial
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reduction of sample mass compared to a subsample mass of 260 kg for a deposit with a
Dax particle size of 572 mm (Table 6.6).

6.4.4.7 Retroactive computation of the number of sampling points

In the approach by Ferguson and Paola (1997) shown in Table 6.7, the number of
sampling points per reach may be computed retroactively from the ratio of the total
sample mass my; required for a sampling precision of 0.3 garound a specified percentile
and the subsample mass for bias avoidance mg. The ratio of the two independently
determined parameters my/my ranges from approximately 55 for a sorting coefficient of s
=1, to 210 for s= 1.5, and to approximately 520 for s = 2. These values are smilar to the
sampling point numbers of 100 - 300 suggested by Wolcott and Church (1991). While the
approach by Wolcott and Church (1991) points out that the number of sampling locations
depends on the degree of spatial heterogeneity of the reach, results by Ferguson and Paola
(1997) point out that the number of grid points strongly increases with the degree of bed-
material sorting.

6.4.4.8 Problems with collecting large samples in coarse gravel and cobble-bed
streams

The total mass of all volumetric samples per reach can become very large. One reason for
thisisthat heterogeneous beds require many samples to characterize areach (Table 6.6
and 6.7). Other reasons are that individual samples become large due to alarge percentile
of interest, poor sorting of the bed, or alarge Dsy size. Sampling large masses not only
requires heavy equipment, but is also restricted to large streams where gravel extraction

of this magnitude does not result in severe environmental damage. When sampling in
mountain gravel-bed streams, collecting large sample masses is often neither feasible, nor
ecologically responsible. Statistical measures (e.g., truncation at the coarse end,
acceptance of alarger error, limitation of analysisto the Dgq Size) help to reduce the huge
sample mass. Logistical measures (e.g., Sieving and analyzing the coarse portion of the
sediment in the field, splitting the sample (preferably in the field) and retaining only a
fraction of the medium and fine gravel and sand for laboratory analysis) improve the
manageability of large sample masses (Section 2.1.3.8 - 2.1.3.10).

6.4.4.9 Computation of the reach-averaged particle-size distribution

To compute the reach-averaged particle-size distribution, each subsample is sieved
individually and a particle-size distribution is computed. The reach-averaged particle-size
distribution is obtained from the arithmetic mean weight frequencies or percentage
frequencies per particle-size class of all individual samples. Thisapproachis
mathematically identical to lumping all individual samplestogether for joint sieving.
However, joint sieving looses all information on spatial variability. The computation of a
reach-averaged percentile particle size from the mean percentile particle-size of all
individual samplesis not recommended and isonly an option if all individual samples are
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sufficiently large to be unbiased. Area weighting is not required because each subsample
represents an equal fraction of the streambed area.

6.5 Spatially segregated volumetric sampling (sampling each unit
individually)

For spatially segregated volumetric sampling, the reach is delineated into
geomorphological units (e.g., bars, riffles, pools) (Section 6.3.1), sedimentary units (e.g.,
fine, medium and coarse facies) (Section 6.3.2), aguatic habitat units (e.g., areas with
particular flow conditions and/or substrate), or any other stream units of interest.
Depending on the study objective, sampling may be restricted to one unit that is of
specific concern, to all units of a certain type, to some representative units of atype, or to
al unitswithin areach.

Spatially segregated volumetric sampling may be applied for sampling the armor |ayer,
the subsurface, or the vertically unstratified bulk sediment. Determining appropriate
sampling schemes and sample masses has been previoudly discussed.

6.5.1 Geomorphologically stratified sampling

Geomorphologically stratified sampling is usually used to characterize the particle-size
distribution of a geomorphological unit. The geomorphological unit most commonly
sampled by volumetric samplesistheriffle. Samples collected from bars or pools usually
focus on a particular location within the unit (e.g., the bar head), or on a particular kind of
sediment (e.g., fine sediment only, or coarsest clasts only) (Sections 6.6.1 and 6.6.2).

Geomorphologically stratified sampling is not arecommended strategy for characterizing
the reach-averaged bed-material size because the number and mass of subsamples
required is much larger than would be the case when sampling the reach stratified into
sedimentary units. Thisaspect is discussed in more detail in Section 6.5.2.1.

6.5.1.1 Sampling on riffles only

Information on subarmor or subsurface sediment size on rifflesisimportant for a variety
of studies. The percentage of subsurface fines, for example, is part of the evaluation of
fish spawning habitat because subsurface fines can decrease the spawning success of
salmonid fish (Bjornn and Reiser 1991). Watershed monitoring studies use changesin the
percentage of riffle subsurface fines over time as an indication of changesin land use
practices and sediment production.

Riffles that are sampled in such studies should be representative of the reach. Rifflesthat

are considerably coarser than the reach should be avoided. Coarse riffles may result from
large rockfall particles being incorporated in the riffle but not in the remainder of the
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reach. Rifflesthat are unusually fine should also be avoided. Fineriffles can result when
imbrication and particle interlocking provide the stability that would otherwise be
provided by the presence of large particles (Sections 6.3.1.3, 3.2.2.2 and 3.2.2.3).
Sampling should be repeated over several rifflesin order to average out local effects.

Note that neither the riffle subsurface sediment, nor the armor layer, nor the vertically
unstratified bulk sediment is automatically representative of the average subsurface
particle-size distribution of the reach. For example, fine sediment entering the reach is
not necessarily stored in the subsurface of theriffle if the stream reach contains backwater
areas or poolsthat are more likely to be storage placesfor fines. If typical storage
features are absent, more fines may be stored in the riffle subsurface sediment than would
be if backwater areas and pools were available for storing fine sediment. Thus, the riffle
subsurface sediment is not necessarily representative of the fine sediment supply to the
reach. The supply of fine sediment is better determined from collecting subsurface
sediment from the entire reach (Section 6.5.2.1) or from spatially focused sampling of
fine sediment in pools (Section 6.6.2).

6.5.1.2 Sampling patterns and sample mass for riffle samples

If the study objective focuses on an analysis of the riffle subsurface (or armor, or bulk)
sediment, volumetric samples should be collected from the entire riffle either in agrid
pattern (Section 6.4.2.2) or from random locations within even-spaced and even-sized
cells (Section 6.4.2.3). The number of samplesto be collected on the riffle depends on
the spatial variability of the riffle subsurface sediment which is unknown but assumed to
be similar to the spatial variability of the surface sediment (Section 6.4). The massfor
each individual sample depends on the sorting of the subsurface riffle sediment, the
percentile in question, and the particulars of the sampling goal (Section 6.4.4).

The user has a choice between collecting full samples, grab samples, or individually
unbiased samples at each grid point. The first option may yield alarge total sediment
mass and isonly feasible if either the number of samplesis small, or when the sediment
on theriffleisfine to medium gravel (Section 6.4.4.1). Grab samples are obtained in
coarse gravel-beds when no particular type of particle-size distribution is assumed, and if
obtaining an unbiased sample for the riffle sediment in general is the study objective
(Section 6.4.4.3). The number of sampling points for grab samples should be determined
from aprecision analysis similar to that in Fig. 6.18 (Section 6.4.3.1). A two-stage
sampling approach may be used to compute the sampling precision (Section 6.4.4.4). If,
for example, abarrel sampler provides a sample mass of approximately 50 kg each, the
user may begin by collecting 3 - 5 samples on theriffle. The sasmplesarerepeated 3 - 4
times at dightly shifted locationsto yield atotal of 9 to 20 samples weighing atotal of
450 - 1000 kg. Rood and Church (1994) used a hybrid sampler (Section 4.2.4.10) that
collects about 13 kg per sample. They found that about 30 - 50 samples were necessary to
detect a 10% change in the percent subsurface fines on an individual riffleif particles
larger than 32 mm were present. A sample mass of approximately 1 ton may be
logistically or ecologically unfeasible. The user needs to either accept a higher tolerable error for
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detecting a change in subsurface fines, or the samples collected must be truncated at some
large particle size in order to reduce the mass of individual samples (Section 5.4.1.4).

If the particle-size distribution in the bed can be assumed to be normal, and the sediment
sorting is known from a pilot study, the user may collect samples that are individually
unbiased (Section 6.4.4.5). Individually unbiased samplestend to produce a higher total
sample mass than the grab-sample approach if the sample is unbiased with respect of the
Dgs and higher percentiles. The total mass of individually unbiased subsamplesis lower
if central percentiles are of concern and sample size only needs to avoid biasin particle
sizes between the D5y and the Dg, (Tables 6.6 and 6.7). The total sample mass required
for the reach is determined for a specified precision around a specified percentile. The
number of samples per reach isthe ratio between the mass of the total sample and an
individual sample (Section 6.4.4.7). The number increases with the sorting of the bed
material.

6.5.2 Sedimentary stratified sampling

Sedimentary stratified volumetric sampling is used to describe the reach-averaged particle
size-distribution of the armor, the subarmor (or subsurface) and the unstratified bulk
sediment (Section 6.5.2.1). Another use of sedimentary stratified volumetric sampling is
to determine the reach-averaged subsurface Dgj Size (Section 6.5.2.2). Theratio of
surface sediment size to the size of subsurface sediment (Dsogyrf/Dsosub) 1S @ important
tool for watershed monitoring and sediment transport analysis.

The ratio of the surface sediment size to the size of the fine mode of bedload, or to the
size of pool fines, isalso used for analysis. These ratios may be used to determine
whether bedload transport is supply- or transport limited (Dietrich et a. 1989; 1993; Lide
et al. 1993; Lide 1995; Lide and Hilton 1992, 1996, 1999; Buffington and Montgomery
1999 4, b, and c). A value closeto 1 for the ratio Dsogr/Dsosun 1Ndicates high sediment
supply, while values larger than 1 indicate low sediment supply. Subsurface sediment
sizeisaso used as an estimate of the particle-size distribution for bedload transport.
Subsurface is similar in size to bedload in aggrading streams, but in degrading streams,
subsurface sediment is coarser than bedload (Lisle 1995). Surface and subsurface
sediment are often related in size, such that coarse surfaces have coarse subsurface
sediment. In reaches where thisrelation istrue, it ispossible to segregate the reach for
subsurface sampling based on the sedimentary textures visible on the surface (Section
6.4).

6.5.2.1 Reach-averaged information on subsurface, armor, or bulk sediment size

Sedimentary stratified sampling is recommended for computing the reach-averaged bed-
material size in heterogeneous reaches because sedimentary units are more homogeneous
and better sorted than either geomorphological units or the reach as awhole.
Consequently, each sedimentary unit requires a smaller total sample mass for a specified
precision than does sampling from a geomorphological unit, or the reach as awhole.
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Sampling schemes for spatially segregated sampling on sedimentary units

Several sampling schemes may be applied for spatially segregated sampling of
sedimentary units. The patterns with which volumetric samples are collected depend on
the size of both the reach and its sedimentary units, and on how dispersed the sedimentary
units are within the reach (patchiness). The sampling patterns are summarized in Table
6.8.

Table 6.8: Approaches for spatialy segregated sampling of sedimentary units for reach-averaged

information on sediment size.
Sampling situation Sampling approach
1. Smdll reach, few sedimentary units An appropriate number of sampling locations
is distributed evenly over each of the units.
2. Large units within large reaches Samples are collected from representative
locations within each of the sedimentary units.
3. Each sedimentary unit occurs Samples are collected from a few patches
multiple times (patchiness) that are representative for a given facies type.
4. Study objective restricted to surface Samples are collected at locations at which the
and subsurface Ds particle size local surface Dy is equal to the reach-averaged

surface Dg particle size (Section 6.5.2.2).

Situation 1: A reach that has only a few sedimentary units that are mostly contiguous and
of approximately equal size may be sampled by collecting several subsamples from all
sedimentary units either at grid points or from within grid cells (Fig. 6.19). Thissituation
ismost likely encountered in small B- and C-type (mountain) gravel-bed streams with
plane-bed and riffle-pool morphology (Sections 1.3.1. and 1.3.2).

fine medium coarse very coarse

Fig. 6.19: Sampling a reach with only a few and mostly contiguous sedimentary units of approximately equal
size by collecting samples from al sedimentary units using reach-spanning grid points.
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Situation 2: If the sedimentary units are large and in large streams, samples may be
collected from afew representative locations within each unit (Fg. 6.20). The selection
of representative units for sampling allows the user to avoid an obviously unrepresentative
location simply because it happensto lie under agrid point. This approach istermed
judgement sampling (e.g., Gilbert 1987). Judgement sampling can improve the sampling
results. However, note that sound judgement requires extensive experience, and that
judgement may vary between operators, particularly if operators have different
backgrounds or levels of training.

Situation 3: Judgement in selection of sampling locationsis also required when the reach
is comprised of numerous small sedimentary units so that each facies occurs multiple
times (patchiness). The number of units may be too large to sample each unit
individually. In this case, the user should select afew unitsthat are representative of a
specific facies and collect samples only from those units (Fig. 6.20). Situation 2 and 3
may occur together, particularly in braided streams or in gravel-bed streams that carry a
large amount of sand and fine gravel.

EaTA R

JIRTA S weR

Facies units s s s s e o

fine medium coarse very coarse

Fig. 6.20: For areach in which a specified facies type occurs multiple times, samples are not collected from
all facies of akind, but from a few representative locations within the sedimentary units. Obviously
unrepresentative locations are avoided.

Situation 4: Sampling from only one selected unit that is representative of the reach-
averaged Ds, surface or subsurface particle entire reach is discussed in Section 6.5.2.2.

Sample mass for spatially segregated sampling and comparison with spatially
integrated sampling

The mass of each individual sample should be sufficiently large to qualify as a grab
sample when no assumption about the underlying particle-size distribution is made (Section
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6.4.4.3). If thedistribution in ¢-units can be assumed to be near-normal, sample mass
needs to be large enough to avoid bias with respect to a specified percentile (Section
6.4.4.5). Thetotal sample massis determined by the optimum number of grab samplesin
excess of which further sampling does not significantly improve the sampling precision
(Fig. 6.18, Section 6.4.3.1). When sampling individually unbiased subsamples, total
sample mass for each sedimentary unit is determined for a predetermined acceptable
percentile error from Figs. 5.22 a-c. The number of individually unbiased subsamples per
unit is the quotient of total sample mass to the mass of individually unbiased subsamples.

Example 6.6 demonstrates how sedimentary stratified sampling of areach can
substantially decrease the sample mass compared to the sample mass needed for spatially
integrative sampling.

Example 6.6:
Assume areach had three sedimentary units A, B, and C each with

a sorting coefficient of s= 1, and a Dg, particle size of 16, 22.6,
and 32 mm, respectively. Sample mass for characterizing each
unit with an acceptable error of £0.3 @unitsis 6.6 kg, 18 kg, and
52 kg (Table 6.9) and sumsto 77 kg for the entire reach (upper,
shaded part of last column).

Table 6.9: Sample mass (kg) for bias avoidance around the Dsgg, Dg4, and Dgs in individual samples and total
sample mass for atolerable absolute error of + 0.3 @for subsurface bed material from three sedimentary
units with Dsg particle sizes of 16, 22.6, and 32 mm, respectively. Computations are done for sorting
coefficientsof s= 1 and s= 2. Sample mass for bias avoidance computed from Fig. 5.20; Total sample mass
computed from Fig. 5.22 b (Section 5.4.3).

Percentile Bias avoidance in individual Tota mass for absolute error of = 0.3 gfor
of interest samples for a D5y of (mm) Dso_of (mm)
16 26 32 16 22.6 32 22.6
UnitA UnitB UnitC Unit A UnitB  UnitC al units
s=1
Dso 0.12 0.3 0.9 6.6 18 52 77
Dag4 0.9 2.6 7.3 52 146 414 612
Dgs 35 9.8 27 188 528 1502 2,218
S=
Dso 0.2 0.6 18 120 336 956 1,412
D4 13.7 38 109 6,800 19,200 54,600 80,000
Dgs 211 592 1684 96,900 304,000 773,500 1,142,000

If the reach-averaged Ds particle size was 22.6 mm, and the reach-
averaged sorting coefficient was 2, a sample mass of 336 kg is
required to estimate the Dg, to an precision of £0.3 @unitswhen
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using a spatially integrated sampling scheme (Table 6.10, lower,
shaded part of column for total sample mass for Dy = 22.6 mm).
Thisis more than 4 times the sample mass accrued from spatially
segregated sampling of that reach. The difference between spatially
segregated and spatially integrated becomes larger if the study
objective shifts from the Dsq particle size to higher percentiles.
Spatially integrated sampling would require more than 30 times the
sediment mass of spatially segregated sampling to correctly sample
the Dg, particle size (Table 6.9, compare the two shaded columns).
The factor by which spatially segregated sampling reduces the total
sample mass over spatially integrated sampling aso depends on how
well the reach can be delineated into homogeneous sedimentary
units.

The reach-averaged particle-size distribution is computed by areal weighting of the
frequency or percent frequency of the particle-size frequency distribution from each of the
sedimentary units (Section 6.3.2.5).

6.5.2.2 Sampling location for reach-averaged subsurface Dsg size

Spatially segregated sampling is particularly useful for determining the reach-averaged
subsurface Dsq particle size, because sampling may be focused on afew sampling
locations. The ability to focus sampling is based on two factors. (1) The ratio between
the surface and subsurface particle size is such that locations with a coarse surface tend to
have coarse subsurface sediment (Section 6.5.2). (2) Thereisaspatial relationship
between the ratios of the local and reach-averaged D5y subsurface size and the ratios of
the local and reach-averaged Dsg surface size (Lisle and Hilton 1998 pers.
communication):

D505ub:|oc - D505ur:|oc (6 5)
D505ub;r-avg D505ur;r-avg '

The proportionality expressed in Eg. 6.5 isalso valid for other percentiles and has been
verified in severa gravel-bed rivers. Thus, the sedimentary unit at which the local surface
Do equals the reach-averaged surface Dsj isthe ideal location for sampling to obtain the
representative reach-averaged subsurface D particle size. Thisfocus of sampling
locations to representative locations provides statistically valid samples that describe the
subsurface bed material relatively accurately with arelative small sample size. Stratified
subsurface sampling becomes particularly important when along (and large) spatially
heterogeneous reach isto be characterized.

The procedure for identifying representative locations for subsurface bed-material

sampling depends on the degree of spatial heterogeneity of the reach and on the relative
size of thereach. A familiarity with the bed-surface particle sizes within the reach of
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concern is therefore very important. The approach outlined below assumes that
sedimentary units (e.g., fine gravel, sand and gravel, coarse gravel, cobbles), each larger
than afew m? are visually distinguishable within a spatially heterogeneous bed. The
approach can be divided into the following steps”:

1. Walk the stream, look at the spatial variation in surface particle sizes and define
different sedimentary units (facies or patches) based on surface particle sizes within
the entire reach. Visual estimates of the Dsg and the Dy, particle sizes are helpful, but
other criteria may be used for delineating facies units as well (Section 6.3.2.1).
Determine the degree of spatial heterogeneity of the reach. Particle sizes on the
streambed may have a complex appearance in which patches of similar bed-material
size are intermingled with other faciestypes. Thisiscommon in large or aggrading
streams (case A), (e.g., Fg. 6.16). Inriffle-pool streams, bed-material particle size
may show simple systematic lateral and longitudinal variability (case B) (e.g., Fg.
6.11).

(Case A) Patchy, and intermingled sedimentary units: select a long sampling reach of
ca. 20 stream widths

2. ldentify the length of the study reach. The reach must be sufficiently long to ensure
that the proportion of the areain each mapped faciesis stable. That is, if you sampled
further up- or downstream, the percentage of the area allotted to each facies would be
stable. A reach length on the order of 20 stream widths is usually required.

3. Hag the boundaries of the sedimentary units, survey the boundaries, and prepare a
map of the various sedimentary units within the study reach. Determine the area of
each patch or sedimentary unit.

4. Perform asurface pebble count on each type of sedimentary unit. If sedimentary units
are patchy, i.e., small and interspersed, and there are many patches of acommon
faciestype, select afew patches that seem most representative and cover each patch
with an individual pebble count (Situation 3, Section 6.5.2.1). Sample enough patches
to determine the variance within a type of sedimentary unit. If sedimentary unitsare
few, comparatively less patchy, lessintermingled and larger in size, cover the entire
unit with a pebble count (Situation 1, Section 6.5.2.1). If sedimentary units extend
over large areas, perform localized pebble counts at random locations within the unit
(Situation 2, Section 6.5.2.1).

5. Compute the average surface sediment-size distribution for each type of sedimentary
unit. The reach-averaged surface bed-material size is obtained by weighting the
average surface-size distribution for each type by its percentage area of the reach
(Section 6.3.2.5).

! Step 1 - 5 are similar to the procedure listed for spatially segregated pebble counts and visual delineation of the reach in
Section 6.3.2.2. For completeness and convenience for the user, the entire procedure is repeated here.
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6. Determine subsurface bed-material sampling locations. Samples that best represent
the reach-averaged subsurface sediment size can either be obtained at one or several
locations at which surface particle-size distributions are similar to the reach-averaged
surface distribution. Alternatively, random volumetric samples can be collected from
the one sedimentary unit that best represents the reach-averaged particle size. If that
sedimentary unit is coarser or finer than the reach average, afew volumetric samples
from afiner, or coarser type of sedimentary unit are needed to better represent the
reach-averaged subsurface particle-size distribution.

7. Alternatively, establish the ratio Dsgg,i/Dsosup fOr the sampling reach. Take severa
randomly placed subsurface samples from each faciestype. Calculate the average
subsurface Dsq for each type of sedimentary unit and the reach-averaged subsurface
D5 as a area-weighted mean, as above. The surface D5y Size of the various
sedimentary unitsis known, and arelation can be established between the ratios of the
surface Dsy of the particular facies type over the reach-averaged surface Ds (i.€., EQ.
6.5). Plotted graphs of thisrelation intersect close to the point where abscissa and
ordinate both have the values of 1, but the slopes of the graphs are different for various
stream types (Lisle and Hilton 1998, pers. comm.). Because it is expected that
sedimentary units with particle-size distributions in the medium size range best
represent the reach-average particle size, sasmpling should be concentrated on those
units.

(Case B) Simple systematic lateral and longitudinal variability in bed-material size: a
short reach may be sufficient

If there is negligible patchiness in surface bed-material size, and only ssimple systematic
lateral and longitudinal variability as expected in coarse-bedded riffle-pool streamswith a
relatively small supply of sandy and gravelly sediment, sasmpling may be limited to a
shorter reach of asingleriffle-pool sequence. However, alonger reach of about 20 stream
widths provides additional representative samples, unless the study isfocussed on a
particular riffle-pool section.

Sampling the subsurface bed material at the location within the reach where the surface
sediment is most similar to the reach-average usually provides a reasonable estimate of
the reach-averaged subsurface distribution. Sampling errors can only be estimated if
several samples are obtained at each sedimentary unit. The adjustment process described
in Step 7 isdifficult to perform in reaches with few sedimentary units, particularly if none
of them has a surface D5 that closely matches the reach-average surface Dso. In this case,
itisdifficult to identify afacies unit with a subsurface Dsg that islikely to represent the
reach-averaged subsurface Dx,.

6.6 Spatially focused sampling

Spatially focused sampling collects a sample from a small and isolated location within the
streambed area. This areamay be in close vicinity of an object of concern, such as zones
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of scour and deposition around bridge piers, or near fish habitat structures. Spatially
focused sampling uses small-scale grids, areal samples, photo sieving and volumetric
sampling. Spatially focused sampling is either used to evaluate the hydraulic and
sedimentary response at a certain locally confined stream location, or to sample sediment
in stream locations that are indicative of reach-averaged conditions of sediment supply.

6.6.1 Sampling large particles on bar heads for stream competence
analysis

Stream competence analysis evaluates the largest particle size transportable by a specific
stream flow, such as the annual high flow, bankfull flow or the 100-year flood. In order
to measure particle sizes transportable by such flows, stream locations need to be found in
which such particles are deposited.

Coarse particles that are mobile during frequent floods are commonly deposited at the
upstream end of bars. Free-formed bars, such as mid-channel and diagonal bars (Fg. 3.4
in Section 3.2.1), have the most direct interaction with the free-flowing stream and are
most indicative of the general flow hydraulics. This makes the upstream end of mid-
channel and diagonal barsideal sampling sites for stream competence analysis (Fig. 6.21).
Next in a hierarchy of sampling sites are point bars, followed by lateral bars.

Particles deposited during infrequent large floods may be found in overbank deposits
away from the main channel or in cobble and boulder berms along the channel.

6.6.2 Sampling fines in pools for analysis of fine sediment supply

Local deposits of fine sediment may also be indicative of reach-averaged conditions of
sediment supply. A moderate supply of fine sediment may not be detectable in the main
channel bed or onriffles. Fine sediment should be visible, though, in locations conducive
to local deposits of fines, such as backwater areas, the wake of stream obstructions (e.g., a
log), aswell asin pools. Repeated monitoring of such locations may indicate whether the
guantity of fines transported by the stream changes over time.

Lideand Hilton (1992; 1999) and Hilton and Lisle (1993) developed afield analysis for
monitoring the deposition of fine sediment in pools. Fine sediment (comprising mostly
sand and fine gravel) is transported in gravel-bed streams long after a high flow during
subsequent moderate and low flows. The fines are eventually trapped in pools and build
deposits of measurabl e thickness along zones of low shear stress near the sidesor in
backwater areas of pools. The parameter V* quantifiesthe ratio of the fine sediment
volume in pools Viines to pool volume Voo and is computed from

Vfines

VE= o e —
VpooI + Vfin&s

(6.6)
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* Preferred Sampling Locale
(unless surface material dictates otherwise)

Fig. 6.21: Gravel-bar sampling sites for stream competence analysis (Redrawn from Y uzuk 1986).

381



To compute V*, the water depth and the thickness of the fine sediment deposit is
measured along a grid system spanned over the pool. The thickness of the fine sediment
deposit is measured by probing with a steel rod that has a cm gradation (Fig. 6.22).

A. Longitudinal Profile

Water Surface
4

Riffle Crest Depth

Residual Pool

e
T Pt ="
RRE R T e

Armor Layer

B. Cross Section
Graduated Rod

Water Surface E‘

Buried Armor
Layer

N = 'n
R T

«  Scoured Residual Pool

Fig. 6.22: (A) Longitudina profile of a pool, showing the riffle crest and the area included in the residual
pool volume. (B) Cross-section of a pool, showing measurement of water and fine sediment depth and
volume of water and fine sediment in the scoured residual pool (Redrawn from Hilton and Lidle (1993)).

Tap the rod with a hammer to penetrate the fine sediment until aresistance isfelt at the
boundary with the coarse armor layer beneath. In order to measure water depth
independent of a current flow depth, water depth is measured up to the residual pool
volume, i.e., the minimum water depth at which water would just overflow the
downstream riffle. Volumes of pool and fine sediment are computed by multiplying the
cross-sectional areas of pools and fines by the distance between cross-sections.

Values of VV* can range from O (for no fines) to 1 if the pool is completely filled by fines.
V* is computed for about 10 - 15 pools (more if V* varies heavily between pools) and
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averaged. A changein V* can be used as a measure to monitor spatial or temporal
changesin fine sediment yield.

Volumetric samples of pool fines may be obtained using a pipe dredge (Section 4.2.4, Fig.
4.30a). Lide and Hilton (1999) compared the particle-size distribution of pool finesto the
fine mode of bedload sediment and to the subsurface sediment in order to analyze
whether sediment transport is supply- or transport limited.
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7. Steps of a sampling project

These guidelines have presented the various topics of bed-material samplingin a
hierarchical order such that basic topics required for the understanding of higher topics
were described first. However, in order to guide the user through the temporal sequence
of sampling, a summary section is provided that explains the steps that may be taken
before, during, and after a sampling project. The summary also highlights the principle
points that should be followed or avoided when sampling in a gravel-bed stream in order
to obtain successful field results.

Preliminary work:

State the study objectiveclearly.

Specify the target population of bed material to be sampled in the study project and
explain why sampling that particular population is assumed to solve the study question.
Bed-material populations may be the surface or the subsurface sediment, sediment
representing the entire reach or sediment from specified geomorphological locations such
asriffles, poolsor bar heads. Stating the study objective is critical toward making a
worthwhile field effort and dictates the more pragmatic decisions of the sampling project.

Get to know the stream.

Walk as much of the stream as possible. View the stream in its environmental context
(note hilldope conditions and eval uate sources of sediment supply or sediment sinks).
Obtain large-scale maps and areal photographs for an overview of the stream and its
watershed. Thisis particularly important if the stream cannot be visited prior to the
sampling project. Obtain hydrologic data such as mean daily flow and annual
hydrographs.

Select a suitable study site.

The proximity to sediment sources or sinks is an important factor to consider when
selecting a study site. Off-stream sediment supply from banks or tributaries, or sediment
retention in beaver dams or diversion structures may have to be avoided in some studies,
while sampling in their vicinity may be the focus of other studies. Environmental
sengitivity of the stream to the disturbance that may be caused by bed-material sampling
should be considered. Vehicle access may be acrucial factor. All these factors should be
part of study-site selection.
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Familiarize yourself with the stream in the sampling area.

Walk the sampling area and determine the morphological units (e.g., riffles, pools, and
bars, Section 3.2.1), their particle sizes (Section 3.2.3), and the stream type (e.g., plane-
bed, riffle-pool, 1.3). Doeslarge woody-debris affect the degree of spatial variability of
bed-material size (Section 3.2.5)? Does the particle-size distribution change within the
sampling area (e.g., heterogeneous or homogeneous reach?). Dig afew small pitsand
determine whether the streambed is armored (Section 3.3.1). Draw a sketch plan (Section
6.1.4) which may include visually estimated mean or maximum particle sizes, the amount
of fines, geomorphological (Section 3.2) or sedimentary units (Section 6.3.2.1-6.3.2.3),
bed-surface structures (Section 3.4), large woody debris and other parameters of concern.

Select the sampling methods needed to accomplish the study objectives.

If the study objective is met by analyzing the surface sediment, use a pebble count
(Section 4.1.1). Combine a pebble count with areal samples (Section 4.1.3) if the bed
contains areas with large amounts of fine gravel and sand interspersed with coarser
particles. Restricted field time may warrant a photo sieving approach (Sections 4.1.2.2,
4.1.3.3), but requires that the bed has a negligible amount of fine sediment (or the fines
areirrelevant to the study), and that surface particles are well visible and not embedded or
imbricated. In addition to saving time during field work, photographic close-ups or areal
overviews of the bed are useful for analyzing bed-surface structures (Section 4.1.3.4).
Use volumetric samples if the armor (Section 4.2.1), or the subsurface/subarmor and the
vertically unstratified bulk sediment (Section 4.2.2) are the focus of the study. Consider
whether the stream site(s) are accessible by vehicle when selecting sampling equipment.

Deter mine the desir ed/toler able sampling precision.

Each study requires a specific sampling precision in order to meet the study objective and
make the sampling effort worthwhile. Precise sampling is particularly important when
attempting to detect a change in bed-material size over time or space (Section 4.1.1.2).
For example, two samples with Dgg sizes of 40 and 59 mm are not statistically different if
each result has a 20% sampling error (Section 4.1.1.5). Remember also, operator errors
add to the statistical error, but are not included in the computation of statistical errors.
Finally, note that sampling errors propagate through the computations for which the
results are used. If the Dsq particle size has a 20% error, this error increases to a factor of
2.25if Dgg israised to a power of 2.

Conduct a pilot study.

A pilot study can verify the feasibility of a selected sampling method (e.g., Are the
particles too wedged into the bed for retrieval? Isthe stream wadable? |Isthe bed too fine
for apebble count? Should areal samples be collected to better account for the
distribution of fine sediment? Isthe bed too coarse for a volumetric armor layer or
subarmor/subsurface sample?) Evaluate whether the anticipated equipment is appropriate
for the bed-material particle size and adry or inundated streambed (Sections 4.2.3, 4.2.4).
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A pilot study is also needed to estimate the standard deviation or sorting coefficient
(Section 2.1.5.4) of the particle-size distribution. The standard deviation largely
determines the sample size needed for a preset precision (Section 5). Finally, apilot study
is needed to determine the degree of spatial variability of the reach, which determinesthe
sampling scheme and the length of the sampling reach (Section 6.1.4).

Estimate the necessary sample size (number of particles, sample mass, or number of
subsamples) for obtaining the desired sample precision.

Estimate the necessary sample size based on data from the pilot study. Use statistical
methods that assume a normal distribution of particle sizes (¢-units), if neither the
distribution of a pilot sample, nor the study objective interfere with this assumption. If
assumptions cannot be made about the underlying distribution type, determine sample
size from methods that are not contingent upon thisinformation. Table 7.1 provides
sample-size procedures for pebble counts, volumetric, and areal samplesfor particle-size
distributions for which either anormal or no underlying distribution is assumed.
Compute sample size using both procedures if you cannot decide on a particular
distribution type at this stage in the analysis.

The sample size required for adesired precision may be large. For pebble counts, thisis
usually not a problem (sampling 400 or more particlesis doable), but gathering
volumetric samples of several tons may be difficult. Evaluate your options before
reducing the sample size. There may be ways to increase the feasibility of large samples
(e.g., field sieving (Section 2.1.3.10), or collecting samples from alarger area). Optimize
the information that can be obtained from a specific sample mass (by truncation and
readjustment of the samples at the coarse end (Section 5.4.1.4), and by collecting grab
samples (Section 6.4.4)). Increase the sampling accuracy by delineating and sampling
homogeneous sedimentary units (Sections 6.3.2, 6.5.2) instead of a heterogeneous reach.
Consider computer resampling of a parent sample (Section 5.4.2.2). Consider whether
the study objective might even be met with alower sample precision.

Consider using statistical analyses not described in this document. This document
provides a variety of statistical analyses suitable for various study objectives, but these
descriptions by no means exhaust the fund of statistical analyses. A statistical procedure
might be available that satisfies your study objective with alower sample size, or a higher
precision than indicated by the analyses in this document. Consult with a statistician to
find out whether a statistical procedure exists that is exactly tailored to suit the needs of
your study.

Deter mine the appropriate spatial sampling scheme (Section 6).

Sample-size statistics require that all subsamples be derived from the same popul ation.
For bed-material sampling, this means that the area from which subsamples are collected
must be more or |ess homogeneous so that all samplesthat are collected may be
considered together. All samples must be collected from random locations. Regular
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sampling patterns such as a grid with arandom starting point (Sections 6.2.1, 6.2.2, 6.4.1)
are preferable over completely random sampling, particularly if the bed is not exactly
homogeneous (which gravel bedsrarely are). Heterogeneous streambed areas may be
sampled by collecting several subsamples, each along areach-covering grid system that is
dightly shifted against the other (Sections 6.2.3, 6.4.3, 6.4.4). This procedure resultsin a
large sample size. Sample size can be reduced without compromising the sampling
accuracy if a heterogeneous sampling areais (visually or statistically) delineated into
several sedimentary units (e.g., a coarse, medium fine, and a bimodal facies) which are
then basically homogeneous (Sections 6.3.2, 6.5.2). The reach should be sufficiently
large so that each facies occurs several times. If sedimentary units are large, collect
subsamples from representative locations instead of covering the entire unit.

The study objective may require that bed material be collected from a specific
geomorphological unit, such as ariffle (Sections 6.3.1; 6.5.1) or a pool (Section 6.6.2), or
that sampling is focused on a stream location with a particular interaction between flow
hydraulics and sedimentation (e.g., bar head, backwater area, wake deposit). These
samples are often used for a comparison over time or space (Section 6.6). Note that
samples from individual geomorphological units or from “specia” locations are usually
not representative of the bed material in the reach.

Establishing a sampling plan and schedule.

Allocate the number of sampling points for pebble counts or the locations of volumetric
samples over the reach. Estimate the field time necessary based on the estimated sample
size. Would more operators be helpful or isthe operator variability for the specific
sampling method so high that employing more operatorsis counterproductive? Can the
logistics be improved? Decide whether to sieve in the field or in the lab (Sections
2.1.3.10, 2.1.3.9). Consider photo-sieving (Sections4.1.2.2, 4.1.3.4) if thefield timeis
very limited. Assemble all necessary equipment and estimate the lab time required for
analysis.

Design field forms (Sections 4.1.1.7, 4.5). Thisisaworthwhile effort even if the forms
are not ultimately used because the process of designing the forms helpsto visualize the
sampling project.

The planning process of a bed-material sampling project may require frequent revisions
because a decision or a fact made or encountered at some point may not be compatible
with a decision or fact encountered at some other point.

While collecting bed material:

Sur face sampling with pebble counts (Section 4.1.1)

Tipsfor reducing (operator) errors.

* Use asampling frame when selecting particles to reduce operator preference for
“handy” particles (Section 4.1.1.6), or sample along a tape measure on dry beds.
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» Sample along a strictly determined grid pattern that covers the sasmpling areato
prevent operators from omitting “unappealing” streambed locations (Section 4.1.1.4).

» Space sampling points by at least the D particle size in order to avoid counting
large particles multiple times which resultsin a serially correlated sample (Section
4.1.1.4).

» Sample from high-flow bank to high-flow bank and record all particle sizesfor each
transect in sequential order (e.g., from left to right bank). Include the location of the
current water line. Such arecord helps to determine a systematic spatial variation of
particle sizes and allows a deferred decision on whether particles from the high-flow
bed are included or excluded from the study (Section 4.1.1.7).

* One operator should select and retrieve all particles. A second person may assist by
taking over the template measurements.

* Theuse of templates (usually in 0.5 ggradation) to measure particle sizes avoids
measurement errors (Section 2.1.3.6) but requires that the size distribution
approximates normality in g-units. Use calipersonly if the measured range of particle
sizesissmall (lessthan 0.5 or 1 @units), if particle sizes are definitely not normally
distributed (¢-units), or when measuring all particle axes for an analysis of particle
shape (Section 2.1.3.7).

Areal surface sampling, sample conver sion and combination.

Use areal samplesif the sampling areaistoo small for a pebble count or when the bed
contains alarge amount of fines (Section 4.1.3). Select an adhesive for areal samples that
will provide the optimum penetration depth for a given particle-size distribution (Section
4.1.3.2). If used to augment pebble counts, areal samples must be converted to equivalent
grid-by-number distributions (Section 4.3). This conversion may not always be clear-cut.
Pebble counts and converted areal samples need to be combined to obtain the complete
particle-size distribution for the sampling area (Section 4.4).

Volumetric samples.

Determine the bed-material layer(s) to be sampled (armor, subarmor/subsurface or bulk)
(Sections 3.3, 4.1) and the thickness of the sample (Sections 4.2.1, 4.2.2). Note that the
sampling result is affected by the methods and the equipment used for sampling.
Therefore, select methods and equipment that corroborate the study objective (Sections
4.2.4, 4.2.5) and avoid methodological changes. It isrecommended that a three-sided
plywood shield be used to define and contain the sampling area unless an undisturbed
sediment core is needed. Remember to collect a sufficiently large sample mass.

Post collection analysis:
Sieving
A standard sieve set in 0.5 ggradation is usually adequate for gravel- and cobble-beds,

although well-sorted distributions may require sieving in 0.25 @units (Section 2.1.3.1).
Sieving the cobble and coarse gravel portion at the field site reduces the sediment |oad
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hauled back to the laboratory. Split the fine part of the sample and sieve only a sufficient
portion for size analysis. Large samples may require splitting the entire sample before
sieving (Section 2.1.3.10).

Using square-hole sieves for the gravel portion is recommended for two reasons: Sieve
results for gravel may directly be combined with sieve results for sand (typically obtained
from sguare-hole sieves), and gravel sieve results are directly comparable with template
measurements (Section 2.1.3.1). Results from sguare-hole sieves must be converted
before they are compared with results from round-hole sieves (Section 2.1.3.5). This
conversion varies with particle shape. The same conversion is necessary before
comparing particle-size measurements performed with atemplate and aruler or calipers.

Analysis of particle shape and other particle parameters.

Particle shape affects the transportability of particles and may indicate the fluvial
transport distance (Section 2.2.2). If avisual classification of particle shape is not
sufficiently accurate (Sections 2.2.3, 2.2.4), al three particle axes need to be measured for
a computation of particle shape (Sections 2.2.1, 2.2.3). Be sureto correctly identify the
three particle axes (Section 2.1.1) and use calipers rather than aruler to obtain accurate
measurements when appropriate. Measure particle axes and any other particle properties
(density, volume and mass (Section 2.3) and bulk density (Section 2.4)) directly at the
field site if particle sizes and sample mass are large.

Statistical analysis.

The gradation curve and descriptive statistics

Compute the frequency per size class either by weight (for volumetric samples) or by
number (for pebble counts) and plot the histogram. Compute the cumulative frequency
distribution and plot the gradation curve (sum curve). Determine the distribution type
(Section 2.1.4) and evaluate whether the distribution is “normal enough” to warrant the
use of statistics based on anormal distribution. Thisisajudgement call. Treat bimodal
distributions (Section 2.1.5.9) as two separate distributions.

Use either a graphic approach or the moment method (Section 2.1.5) to compute the
particle-distribution parameters. A graphic analysisis recommended when analyzing only
afew data sets and particularly for the novice user because this method makes it easy to
see the connection between computation and statistical results. Compute the seven
percentiles (Ds, D1g, D25, Dso, D75, Dgs, Dgs) and the descriptive statistical parameters
(mean, sorting, skewness and kurtosis). The moment method computes the moments
(which are largely equivalent to the graphic distribution parameters) directly from the
frequency distribution. This procedure isrecommended for a fully computerized analysis
of alarge number of data sets.
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Statistical precision of a sample (Section 5)

Thefirst estimate of the relation between sample size and precision was based only on a
pilot sample. The actual precision isdetermined after all samples are collected. Table
7.1 indicates the sections in this document that discus sample-size procedures used for
pebble counts, volumetric, and areal samples. Either anormal distribution is assumed, or
the procedure makes no assumptions regarding the distribution type.

Table 7.1: Document sections explaining sample-size procedures for pebbles counts, volumetric, and areal
samples, for an assumed underlying normal distribution, or for no assumed distribution type.

Normal distribution assumed No distribution type assumed
Pebble count 522 523, 524
Volumetric sample 543 54.1.1, 54.2
Areal sample 531 5.3.2, 533

If attaining a preset sampling precisionis crucia to the sampling project, compute
sampling precision at the field site as soon as samples are sieved and analyzed. Use a
laptop computer and pre-designed spreadsheets for rapid field computations (Sections
5.2.2.9,5.4.3.1, 5.4.3.2). Continue sampling (during the same field season) until a
tolerable sampling precision has been reached.

More statistical analyses than described in this document are available in the statistical

literature. Consult with a statistician to identify the statistical analysis that satisfies your
sampling objective as best as possible.
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8. Appendix

Probability paper with linear divisions
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Probability paper with logarithmic divisions
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10. Index

A
a-axis, 14-17, 86, 136-137, 140
Abrasion, 85, 88, 107
Absolute error, 242. See Error around mean,
median, and percentiles
Accuracy, 243-245, 259, 277
and precision, 244, 225
definition of, 244
Adhesive areal samples, 224-226, 284, 351, 355
methods, 172-177
for fine gravel surfaces, 172
clay and flour dough, 176-177, 230
effect of sedimentary properties, 173
freeze technique, 173
various substances, 172
wax, 225, 229
modeling, 224
Adhesive penetration depth, 173-175, 217
computed, 226-229
Adhesive properties, 173-176
Adjustment of frequency distributions, 237-238
Aggrading stream reach, 120, 122, 191, 228, 340,
345, 373, 378
Air-drying, of particles, 32, 33
Alluvial, free-formed streams, 117
Alluvial wedge, 124
Alternate bars, 109, 113
American Society for Testing and Materials. See
ASTM
Anastomosing stream, 9
Angle of repose. See Pivot angles
Angularity. See Particle shape
Antidunes, 134
Aquatic habitat, 105, 128, 132, 146, 178, 277,
279, 371
for spawning 131, 203, 371
Area-by-number, 171, 178, 219, 221, 228
Area-by-weight, 171, 217-220, 222-227, 229
Areal overview, 166, 183-184
Areal samples, 132, 144-146, 154, 168, 170-173,
176-178, 184, 188, 230, 234, 325, 342, 347,
351, 354-355, 380
adhesive methods. See Adhesive methods
area covered per sample, 171, 197, 283-286
bias towards fines, 224
converted to grid-by-number by:

computed penetration depth, 226-229
modified cube model, 224-226
split plane surface model, 227-229
voidless cube model, 218-224, 227
combined with pebble counts by:
adjustment of frequency distributions, 237-
238
flexible combination, 233-236
rigid combination, 230-233
definition of, 145, 170
from photographs. See Photographic areal
samples and Photo sieving
hand-picking, particle retrieval, 145, 170-172
magnetic paint, 172
operator variability, 176
sample size and number of samples, 171
suitability of, 146
thin-section technique, 173, 176
time requirement of, 146
to expose subsurface, 192
Areal weighting, of particle-size distributions,
347, 351, 354, 356-358, 371, 377-379
Arithmetic progression, 59
Armor layer, 129-132, 143, 188, 191, 199, 201,
207, 213, 333, 359, 371, 373
definition of, 188
development of, 182, 188
diagram, 143
difference between armor and subarmor, 190
poorly developed, 188
removal of to expose subarmor, 191-192
representativeness for the reach, 372
sample, 191, 330
sampling, 210
sampling depth, 188, 190
thickness, 188-190, 192, 330
Armored beds, 228
Armoring, 128, 130-131, 199
degree of, 188, 191
ASTM C136-71, 296
ASTM D75-71, 296
ASTM E-11, 21
A-type streams, 4, 9, 122-123, 325, 326

B
Backfill, of transverse clast dams, 133-134
Backhoe, 203
Backwater, 123-124, 126, 277, 340, 372
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Bankfull, 118, 289, 338, 380
Bank line, 120
Banks, 283, 326, 346
self formed, 120
Bankward fining, 120
Bar graph, 38
Bar head, 113, 117, 119-120, 371, 380
Barrel samplers, 206-208, 331, 367, 372
Bars, 107-111, 113, 119-121, 326, 333, 340
alternate bars, 109, 112
bed-material size, 113-114
downbar fining, 108, 114, 323, 326
forced by obstacle, 114
free-formed, 114, 380
in braided streams, 112, 114
in B-type streams, 122
in mountain streams, 111
in streams with large sediment supply, 112
lobe front, 109, 133
medial bars, 113
point bars, 109
representativeness for sampling location, 114
riffle bars, 109
sampling on, 380-381
Bar toe, 114
Bar types, 111
Bar unit, 109-111, 113, 115-117, 122
b-axis 14-17, 21-25, 27-28, 86, 136-137, 168-
169, 179
and square-hole sieve size, 21
lengths, 16, 21, 23-24
measurements of, 28, 30, 164. See also
Measurements of particle size
of the Dy 189
on photographs, 166, 168-169, 178-179, 184
plane, position of, 168-170, 178, 184
Beaver dams, 123
Bedform morphology, 120
Bedload, 107-108, 119, 123-124, 127, 130-132,
343
particle-size distribution of, 373
blockage of conveyance by LWD, 123-124,
126
Bedload sheets, 135-136
Bedload transport
prediction of, 141, 188, 343
rates, 127, 136, 148, 289
supply-limited and transport limited, 340, 343,
373, 383
three-dimensional patterns of, 108
Bed-material sampling. See Sampling,
Bed-material size, 107-108, 113, 126
and sediment supply, 114
around boulders, 124, 127
around LWD, 116, 125-126
chaotic patterns, 126
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coarse, 115
coarsest parts of the reach, 117
heterogeneity (heterogeneous). See
Heterogeneity
homogeneity (homogeneous). See
Homogeneity
in pools, 113, 118, 119
in riffle-pool reach, 120, 122
on bar heads, 120
on bars, 113, 114
on riffle crests, 113
on riffle-related features, 117
on riffles, 108, 116, 118, 120
patchy, 126, 323. See also Patch, patchiness
reach-averaged. See Reached-averaged bed-
material size
spatial variability. See Spatial variability of
bed-materia size
vertical stratification, 128-132, 143
wide size range of, 199
Bed stability, 136, 362, 372
Bed-surface plane, 173, 175, 177
Bed-surface structures, 114, 133-141,154, 156,
183, 327
analysis by photo sieving, 181
and photographic methods, 133
effects on bed-material sampling, 119
effects on hydraulic roughness, 142
effects on particle mobility, 141
Bias, 243-245
against fines
in pebble counts, 224, 229
in photographic grid counts, 170
in photo sieving
in shoveled samples, 199
against large particles, 338
in heel-to-toe samples, 154, 156-157
in small samples, 304
in volumetric samples, 192, 194
and percentiles, 311-314
and sample mass, 313
and sorting, 311-314
in areal samples, towards fine sediment 224
in pebble counts, against fines, 224, 229
in photo sieving against fine and large
particles, 178, 181
in poorly accessible stream locations, 333
towards large particles, 300-301, 341
in areal samples, 285
in small samples, 304
Biased sample, 298
Bimodal, 51, 62, 82-84, 108, 275
Bimodality, 62, 83-85
Binned data, 71
Binning, of particle sizes, 42, 328
Binomial approach (sample size), 261, 264-265



Boom trucks, 203
Bootstrap approach (sample size and sample
mass), 152-153, 162, 243, 261, 268-277,
288, 309, 315-320
and multinomial approach, 277
and total error, 276-277
computer program for, 309
versus one-step approach, 276
Bootstrap error, 268-275, 315-320
Bootstrapping. See Bootstrap approach
Boulder and cobble berms, 135, 362, 380
Boulder-bed streams, 1
Boulders, 17-18, 20, 326, 327, 338
avoided in heel-to-toe samples, 154
effect on flow and sediment transport, 116,
124, 127
effect on local bed-material size, 124, 127
excluded from sampling, 127, 289, 327
in cascades, 117
included in the sample, 127, 289
in step-pool streams, 123
in transverse clast dams, 133
measurements of, 33-34
selection in pebble counts, 161
untransportable (immobile), 127, 131, 141,
326, 327, 342
Braided stream, 9, 109-110, 122-115, 131, 375
B-type streams, 4, 9, 122, 325, 326, 333, 334,
374
Bulk density, 100-101, 106, 294, 297, 313, 317
computation of, 104
effect of particle packing, 100, 104
for shoveled sediment, 196
for various sediments, 104
in dry channels, 101
ininundated channels, 100
insitu, 196
in situ measurements, 100-104
relation to sediment porosity, 105
required sample mass, 103

C

Cadlipers, 16, 20, 27-28, 30, 33, 86, 164-165, 329
Cascades, 6, 8-9, 116-117
c-axis, 14-17, 24, 33, 86

estimation in photo sieving , 179

of the Dy, 189
Censored layer, censored gravel, 130-132
Center of class, 23-24, 47-48, 61, 65, 72
Central tendency, 62
Channel. See Stream
Chi-square, 265
Clay and flour dough for areal samples, 176-177
Clusters, clustered 107, 114, 118, 121, 136-138,

142, 144, 169, 327, 338, 342

Coarse gravel-bed streams, 114
Coarse mode, 84
Coarse particles, 108, 117, 131, 137
Coarsest locations in the streambed, 118
Cobble beds, 208
Caobbles, 17, 24, 28, 117, 123, 128, 133
and sample mass, 299
measurements of, 32-34
mobile and immobile, 326
selection in pebble counts, 161
Coefficient of variation, 252
Combination of particle-size distributions from
different methods of sampling and analysis,
216, 355
adjustment of frequency distributions, 237-
238
flexible combination, 233-236
rigid combination, 230-233
Computed adhesive penetration depth, 226-229
Computer sampling, 364. See also Bootstrap
approach
Confidence interval, 264-265
around all particle-size classes, 265-268
Confidence level, 243, 247-250, 266-267, 271,
280, 287, 316, 349, 350
definition of, 247
Contents of the pan, 60
Contingency table, 278
Conversion of particle-size distributions 216-217,
278, 342, 354
computed penetration depth, 226-229
modified cube model, 224-226
split plane surface model, 227-229
voidless cube model, 218-224, 227
Cookie-cutter sampler, 206-207
using divers, 207
Core samples, 132
Coupled streams, 12
C-type streams, 111, 120-122, 325, 326, 333,
345, 374
Cumulative particle-size frequency distribution,
23, 27, 31, 38, 40-41, 43-44, 47, 57, 62, 66,
357-358
inmm, 38
in g-units, 38
of equivalent Gaussian distribution, 52
of small samples, 63
percent finer, 38, 47, 74
percent coarser, 38, 74
plotting; curve, 38-39, 41

D
D’ Agostino test, 54
Dams, 130-131
Data sheet, for sieving, 31
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Debris flows, likelihood of reaching stream, 12
Degrading stream, 120, 122, 124, 340, 373
Delineation of geomorphological units, 340-341,
343, 371
Delineation of sedimentary units, 326, 336, 340-
341, 345-351, 359, 371, 377, 378
criteriafor, 346
for subsurface sampling, 373
moving window technique, 329, 348, 351
retroactively, 329, 361, 369
statistical, 329, 348-352, 357
visual, 345-348
Deposition, 326
of coarse sediment, 113, 118, 123-128, 130,
188. See also Lag deposits
of fines, 120, 125-126, 133, 138, 140, 191,
340, 380. See also Fine sediment
onriffles, 118
Deposits,
of debrisflows and landslides, 123, 136-137
non-stratified, 132
Dsongface/Dsongerface ratio, 131, 191, 373, 379
DSOarmor /D50$ubarmor reti 0, 188
DSOsurface / Dbedload fines ratio, 373
D50I ocal / D50 reach-avg. reti 0, 379
Dissipation of flow energy, 118
Distribution, 57
central parts, 46
fine and coarse tails, 40, 44-46, 56, 60-61, 74,
76, 78
Distribution parameters, 38, 41, 45, 55-60, 108
accuracy of, 60
and near-normality, 57
arithmetic approaches, 56-59
central tendency, 62
comparison between methods, 80-81
compilation of (Table 2.8), 58
computerized computation, 61
frequency distribution method. See Moment
method
geometric approaches, 56-60
graphic approaches, 56-59, 61
moment method, 56-58, 60-61, 63. See also
Moment method
number of percentiles needed, 60
overview, 57
various approaches, 56
Distribution types,
assumed. See Underlying distribution type
testing for, 42
Divers, 131, 181, 204, 207
Double (or multiple) counting, 147-148, 156,
166, 168, 327, 338, 341. See also Seria
correlation
effect on particle-size distribution, 156
Downbar fining, 108, 114, 323, 326
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Downstream conveyance of sediment,
blockage by LWD, 123-124, 126

Downstream fining, 107-108

Downwelling flows, 132

Dredge, 215, 216, 383

Dune-ripple stream, 6, 8

E
Eddy, eddies (wake), 137-138
recirculating eddy, 118
Ellipsoid, ellipsoidal. See Particle shape.
Embedded, embeddedness, 139-142, 169, 189-
190
effect on photographic analysis, 182
Entrenchment ratio, 7
Equal mobility transport, 128, 130-131, 188
Erosion pavement, 124, 128, 130-131. See also
Lag deposit
Erosion threshold, 136, 141
Error (mass-based computation and general). See
also Precision
around mean, 309
around median, 309, 368. See also Two-stage
approach
around percentiles, 315-320
absolute, 305-309, 318-320, 320-322
central percentiles, 301-304
computed analytically, 315-320
estimated from regression function, 304-306
percent, 305, 307, 320-322
standard error, 315-320
conversion between absolute, standard, and
percent, 272
effect of large particles, 291, 298
from bootstrap approach, 315-320
in distribution tails, 60
preset acceptable, 242, 315, 323, 326, 331,
338, 366, 372, 376
Error (number-based computations and general).
See also Precision
around mean, 245-246, 249-258, 276
absolute, 249-252, 254-255, 257, 272, 276
comparison of absolute and percent, 251-
252, 258
comparison of sample-size egs., 256-258
limited population size, 254-256
percent, 250-257
around median, 261-263, 276, 285. See also
Two-stage approach
absolute, 262-263, 272, 276, 285
around percentiles, 247, 261, 264-277, 284,
absolute, 152, 271
central percentiles, 261-263
computed analytically, 274



in symmetrical and skewed distributions,
272-273
percent, 152, 157, 264-268
standard error, 242, 247, 268-275
conversion between absolute, standard, and
percent, 272
from bootstrap approach, 268-275
in 100- and 400-particle pebble counts, 149,
152, 157, 250, 266, 271, 276-277, 327-
328, 334, 338, 347, 352
in distribution tails, 60
in percent fines, 283
in skewed distributions, 272, 276-277
in symmetrical distributions, 271
preset acceptable, 242, 246, 248, 250, 258-259,
285, 323, 326, 338
Typel and Type I, 278-280, 282
Error band around entire particle-size
distribution, 265-268, 277
Error curves around percentiles, 273-274, 305-
307
and replicate sampling, 307, 364
comparisons, 320-322
trumpet curve, 305-306
from best-fit regression function, 305-306
scatter in, 305, 308, 364

F

Facies units. See Sedimentary units
Familiarization with reach or facies units, 326,
345, 346, 348, 377
Field, 25, 27-28, 30, 32
Field book, 166, 240
rain-proof, 240
Field computations, 260
of sample size, 263
Field forms 240. See also Data records and data
sheets
developing, 240
for pebble counts, 165
Field notes, 300
Field sieving and weighing, 33-34, 36, 181
Field site, 32-34, 177
number of, 181, 182
remoteness of, 199, 208
Field time, 144-146, 170, 181
for photographic analysis and photo sieving,
181, 184
Field work, 240, 241
experience necessary, 5
Filled gravel, 129
Fine particles
accumulation in poorly accessible areas, 151
between low and high flow water line, 151
inclusion or exclusion from sample, 166

inintergtitial voids, 229
partially hidden, 171, 283
underrepresented in pebble counts, 151, 153
variability between samples or operators, 151-
152
Fine sediment in gravel beds, 105, 108, 131, 371
151, 191, 386
abundance of, 128, 139
accumulation of, 277
around embedded particles, 140
at the downstream end of the bar, 114
deposits of, 133, 138, 380
exclusion from sample, 153
in backwater, 124, 372, 380
in bedload, 373
in bed-surface structures, 133-141
infiltration of, 130-132, 182, 188
in pools, 118-119, 323, 340, 372, 373, 380,
382-383
in spawning gravel, 203
in subsurface sediment, 372
intrusion, 131
in wake of boulder, 127
scour of, 124, 128, 130
storage of, 372
stream locations indicative of, 380
supply of, 119, 130, 132, 372,
tallying in one size class, 154
veneer of, 330
washed away during sampling, 13, 199, 203
wide sizerange < 0.1 to > 8 mm, 203
Fisheries biologists, 139
Fish habitat (studies), 185, 203, 371. See also
Aquatic habitat
Flexible combination, 233-236
Floods, very large, 133, 326, 380
Flow
around boulders, 127
energy, dissipation of, 118
helical, 113
high energy, 131, 134
subcritical, critical, supercritical, 117
three dimensional pattern, 108, 126
Flow depth, 110, 113, 117, 184
Flow hydraulics, 128, 139-140, 326
Flowlines, 138
Flow separation zone, 137
Flow velocity, 113, 117
fast, 199
in pools, 118
onriffle-related features, 117
onriffles, 117-118
reversal of, 118
surface and bottom, 114
Fluvial transport distance, 16, 24, 51, 83, 88-89
Form-sphericity diagram, 179
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Framework subsurface sediment, 188
Framework-supported gravels, 128, 131, 225
Fredle index, 76-77
Free matrix particles, 104-141
Free particle space, 140-141
Freeze-core samplers, 198, 204-205, 208, 210-
213
problems with large particles, 213
Freeze-core samples, 100, 104
comparison with other samples, 213
sample mass, 211
stratification, 210
Freeze technique, for areal samples, 173
Frequency-by-number, 40, 216-217, 219-222,
237
Frequency-by-weight, 216-217, 219-222
Frequency distribution. See Particle-size
frequency distribution
Froude number, 117, 135

G
Gaussian distribution. See Normal distribution
Geometric progression, 59
Geomorphological units, 323, 325, 326, 337, 340,
341, 344, 371
comparison of particle sizes between, 340, 343
delineation of, 326, 336, 340-341
retroactive delineation of, 329
sampling on, 341-342
size of, 331
small, 341
sorting on, 373
spatial variability on, 341
Geomorphologically stratified sampling,
surface sampling, 340-345
volumetric sampling, 371-373
Glide. See Riffle
Goodness-of-fit, 45, 47-48
and computational consistency, 47
and sieve size, 47
effect of skewness, 51
effect of truncation, 51
for fine or coarse part of distribution, 51
to lognormal distribution, 47
to normal (Gaussian) distribution, 45, 47, 51,
243
to Rosin distribution, 51
Grab samples, 372, 373
comparison between computations, 369
mass of, 366-369
number of, 367, 376
repetitions of, 368
small and biased, 366
Gradation coefficient. See Sorting
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Gradation curve. See Cumulative particle-size
frequency distribution curve
Grain-to-grain contact, 136-137
Gravel, 17, 20, 30-31
Gravel- and cobble bed streams, 2
Gravel lobes, 114. See also Lobe fronts
Gravel mobility, 141
Gravelometer. See Template
Gravel pits, 132. See also Sampling pits
Gravel sheets, 135
Gravel sheltered in pockets, 141
Grid-by-number, 154, 168, 171, 178, 197, 217,
219, 221-225, 227-228, 230, 233, 237, 354
correspondence with volume-by-weight, 227
Grid-by-weight, 219
Grid counts, 145-146, 166, 169-170, 184
definition of, 145, 166
photographic. See Photographic grid counts
Grid sampling, 324, 334, 361, 363, 382
for each facies unit, 351, 353
for volumetric riffle samples, 372
in heterogeneous riffle-pool reach, 338
reach spanning, 351-353, 362-363, 374
several, overlaying, 324, 336, 341, 354, 363
Grid spacing, 327, 338-339, 341, 347-348, 353,
361, 365. See also Pebble count, sampling
point spacing
cell size, 362
in different geomorphological unit, 341
in meander bends, 337-338
in streams of different widths and Dy, 339
minimum, 348
selection of, 362
small-scale, 380
tightly spaced, 332, 336-337, 341
widely-spaced, 333, 334, 337
Guidelines for bed-material sampling, 2, 5
in mountain streams, 5
in sand-bedded streams, 2
no substitute for experience, 5
problems of, 4
wide variety of, 5
Gullies, 9

H
Hand-picking subsurface particles, 197
Hand-picking surface particlesin areal samples,
172
Hanging scale, 33-34
Heel-to-toe sampling, 146-149, 152-159, 161-
164
comparison with sampling frame, 161
mean percent error, 153
overrepresentation of mid-sized particles, 156
total error, 152



underrepresentation of fines and cobbles/
boulders, 156-157
Helley-Smith sampling bag, 200-201
Heterogeneity of bed material, 333, 336, 345,
360, 363
degree of, 323, 332, 333, 345, 348, 359, 363,
377,378
definition of, 326, 370
effect on selected sampling scheme, 336
example of,
evaluation of, 359
reduced by delineation into facies units, 345
sampling of. See Sampling patternsin
heterogeneous reach
High flow, 113, 117-118, 121, 131
Histogram, 38, 40, 239
Homogeneity of bed material, 117, 120, 122,
323, 360
degree of, 323, 332, 333, 345, 359
definition of, 326
near-homogeneity, 326, 333
truly homogeneous, 326, 360
relatively homogeneous, 332, 334, 359, 373
reach-averaged particle-size, 334
homogeneous units, 345
sampling of. See Sampling patternsin
homogeneous reach
Horseshoe vortex scour, 127, 138-139, 142
Hybrid pipe-freeze-core sampler, 199, 213-215,
372
Hybrid sampling, 217, 351, 354, 355

I

Imbricated, imbrication 118, 121, 134, 136-137,
141-142, 144, 169, 343, 372

Imhoff cone, 204

Immobile particles and object, 127, 131, 138

Infiltration of fines, 130-132, 182, 188

Initial motion, 141, 146

Intergranular friction angle. See Pivot angles

Interstitial fines, 333

Interstitial flow, 131

Interstitial space index, 141

Interstitial spaces, 277

Iterations in sample-size computation, 250-251,
262, 285-286, 303. See also Two stage
approach

SO (1977, 1992), 290, 293, 299, 301

J
Joined sieving, 343, 361, 366, 367, 370
Judgement in selection of sampling locations,
375
Judgement sampling, 355, 375

K
Kurtosis, 42, 56-58, 79, 149
classification of, 78
comparison between methods, 82
definition of, 78
fourth moment, 79, 80
graphic arithmetic, 78
graphic geometric, 79

L
Laboratory time, 144-146, 181
Lag deposit of coarse sediment, 117-118, 120,
123-127, 130-131
Landscaping cloth, for particle drying, 32
Landdlide deposits, 123
Landward fining, 108, 114, 122, 323, 326
Large woody debris. See LWD
Lateral fining, 108, 122, 334, 378, 379
Liquid nitrogen, 210, 215
Lobe front of coarse sediment, 114, 133, 330
Local hydraulics, 191
Logarithmic transformation, 41-42, 46, 54, 60,
65, 72
Logjams, 107, 124, 130
duration of, 124
sequences of, 127
Lognormal distribution, 17, 42-43, 45-47, 69, 73,
82, 242, 253, 256, 263
standard equation for, 46
Lognormality, 41, 43, 54
Longitudinal clast ribs, 134, 136
Longitudinal stream profile, 108, 117
Low flows, 113, 115, 117-119, 121, 124, 135
LWD (large woody debris), 108, 116, 123-127,
326, 327, 334,
effect on bed-material size, 123, 125
effect on flow and sediment transport, 116,
124, 127
heavy loading of, 126, 345

M

Magnetic paint, 172
Map, mapping,

of facies units, 337, 346, 348, 378

sketch map of reach, 326, 341, 348, 357

textural, 346-347, 378

using photographs, 142
Matrix of finer sediment, 136, 139
Matrix-supported gravel, 128, 225
Meander bend, 114, 325, 337, 338, 343
Meandering streams, 109-111, 113, 115, 325,

343
meadow meanders, 9
valley meanders, 9
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Mean particle size, 41-42, 46, 56-57, 59, 62-65
arithmetic, 46, 59, 62, 348-350
comparision of computations, 80-81
definition of, 62
first moment, 65
geometric, 59, 64, 223
graphic arithmetic, 62, 64
graphic geometric, 63-64
in skewed distribution, 63
visual assessment of, 327

Measurement of particle size, 20, 27-30, 323
in pebble counts, 164
operator error in, 148, 164, 329
record of, 164

M easurement of particle volume, 98, 310

Median particle size, 40, 46, 59-60, 62, 74
basisfor stream classification, 1, 7
definition of, 40, 62
in skewed distribution, 62
visual assessment of, 345

Mesh-bag scoop, 200-201, 210

McNeil samplers, 198-200, 203-206, 213
and percent fines, 204
comparison with other sasmplers, 204
comparison with shoveled samples, 200-201
diagrams, 205
dimensions, 204
representative collection of fines, 200
sample mass, 204
sampling suspended bed sediment, 203-204
truncation of coarse particles, 203

Micro-channels, sand-filled, 363

Modality, 62

Mode, 46, 62, 66, 83
definition of, 62
in Rosin distribution, 48
in skewed distribution, 62

Modified cube model, 217, 224-226

Moment method, 56-58, 60-61, 63, 82
advantage/disadvantage of, 61
effect of truncation, 61
exclusion of "pan”, 80
first moment (mean), 65
fourth moment (kurtosis), 79
second moment (sorting), 71, 246
suitability, 61
third moment (skewness), 77

Monitoring bed-material size, 148, 188, 335
for detecting changein

amount of fines, 128, 132, 203, 277, 340,
371, 380, 382-383
channel bed, using photographs, 184
riffle sediment size, 343
for watershed effects analysis, 146, 343, 371,
373
using visual estimates, 185
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Mountain streams, 12, 111, 114, 131, 143, 150,
158, 164, 199, 243, 258, 271, 275, 277, 326,
327, 335, 336, 360, 370,

volumetric sampling in, 319, 331, 332, 360,
363, 365

Moving window technique, 329, 348, 352

Multinomial approach (sample size), 261, 265-
268, 275, 277, 284, 287

Multiprobe freeze-core sampler, 199

N
Nomina diameter, 16-17, 221, 291
Non-normal distribution, 44-45
Non-parametric statistics, 43
Non-random sample, 148, 156
Normal distribution, 17-18, 24, 28, 40, 42-48, 51-
52, 57, 59-60, 62, 67, 69, 73, 78, 242, 243,
248, 253, 264, 272, 273
as prerequisite for statistical applications, 42
assumption of. See Underlying distribution
type
binned data, 45
change of curvature, 40
comparison with best-fit normal distribution,
45
Normality, 41-43, 46, 54, 57. See also Normal
distribution
approximate, 327
assessing the degree of, 51-52, 57
assessment by regression analysis, 45
D’ Agostino test for, 54
departure from, 42-43, 54
effect on sample size, 42
Kolmogorov-Smirnov test for, 54, 270
near-normality, 51, 54, 376
not in a strict statistical sense, 42
null-hypothesis of, 54-55
resemblence with, 45
summary statistics of, 51
testing by regression coefficients, 45
testing for, 43, 45
visual assessment of, 43, 52
wrongly assumed, 42
Number-based frequency. See Frequency-by-
number
Number of volumetric samples, 331-332
effect of heterogeneity and sorting, 370, 373
for spatially integrative sampling, 359, 363,
364, 366, 368, 370, 371,
geometrical and ecological criteria, 363, 365,
370, 372
grab sample repetitions, 368
grab samples, 372, 376
in large streams, 364
in small streams, 363



individually unbiased subsamples, 376
on riffles, 372
per area, 331
per reach, 363, 364, 373
retroactive computation of, 370
subsample repetitions, 364
subsamples, 364

Null hypothesis, 51, 54, 281, 348

@)
Obstacle clast, 137-138
One-step vs. Multinomia approach, 277
Operator arbitrariness, 344
Operator bias, 147, 243, 245, 259, 279, 334
and sample size, 245
against cobbles and boulders in pebble counts,
154-155, 244, 333
effect of boot size, 154
in heel-to-toe samples, 157, 161
reduction by sampling frame, 161
against small particlesin pebble counts, 60,
149-153, 157, 244, 277, 283, 333
due to poor streambed accessibility, 151
invisual particle-size estimates, 185
towards cobbles and boulders, 147-148, 156
inareal samples, 172
towards finesin areal samples, 172
towards mid-size particles, 244
Operator error, 20, 28, 148-149, 162, 259, 277,
283, 304
and sample size, 259
effect of multiple operators, 259-260
in heel-to-toe samples, 152
in particle-size measurements, 148, 164, 329
in pebble counts, 148-149, 152
when using sampling frame, 162-164
Operator training, 5
Operator variability, 25, 27
inarea sampling, 176
in pebble counts, 151, 154
invisual particles-size estimates, 185
Optical particle-size analyzer, 169, 178
Oven-drying, of particles, 32
Overbank deposits, 380
Overbank flow, 135

P
Parent population, 245, 248, 250, 252, 259, 261-
262, 264-265, 268, 275, 285-286, 321

computer generated, 288, 308
generated from sample, 288
surrogate for, 304
Particle area, 284
Particle availability for sampling, 243, 254-256

Particle axes, 14-16, 20, 28-29, 86, 164. See also
a-axes, b-axes, and c-axes
ellipse-approximation, 86, 178-179
position of, 136
ratios, 86, 87
Particle breakdown, 107
Particle counting
number of per photograph, 178, 181
number of per size class, 36, 38
Particle density, 14, 34, 36-37, 98, 290, 301, 310,
313, 317
for different materials, 98
Particle interlocking, 118, 343, 372
Particle mass, 367
measurement of, 98
Particle mean weight and sieve size, 36-37
Particle mobility, 138, 141
Particle number
per photograph 178, 181
per size class, 36, 38
Particle packing, 94-97, 100, 103-104, 133, 136,
142, 165, 170, 182, 184, 287. See also
Framework gravels, Matrix gravels, and
Bed-surface structures
and compaction, 104
and effect of particle-size distribution, 104
void containing, 224
voidless, 193, 218, 221
Particle paths for coarse and fine bedload, 114
Particle position
effect on embeddedness, 190
effect on photo sieving, 179
Particle protrusion, 141
Particles
irretrievable, 150, 151, 336
large and wedged, 13, 122-123, 141, 155, 165,
333
partialy hidden, 144, 169, 171-172,
effect on photo sieving, 184
on photograph, 179, 184
to be included in a sample, 148, 166
unisized, 95, 104
untransportable, 108, 117, 124, 127, 131, 138
Particle shape, 14-17, 21-25, 28, 36-37, 60, 85-
91, 94, 98
analysis by photo sieving, 181
and abrasion, 83, 88, 90
and particle mobility, 90
angular, angularity, 16, 27, 85-86, 90-92, 94-
97
and transport distance, 90
bladed, bladedness, 86-90, 179
categories, 91
classification, 87
compact, compactness, 36, 87-90, 179
Corey shape factor, 89, 90
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diamond-shaped, 30
disc, 86-87, 89
dominant shape, 97
effect of fluvial transport distance, 88-89
effect on embeddedness, 190
effect on photographic analysis, 182, 184
effect on photo sieving, 179
effect on pivot angle, 93
effect on suspensibility, 88
ellipsoidal, 14-17, 23-25, 89-90, 95-97, 189,
284, 290-291, 310
elongated, elongatedness, 36, 86-91, 95
flat, flatness, 20-25, 90-92, 94, 136
form factor F, 87, 89
form-factor S, 88
per sieve class, 24
platy, platyness, 86-90, 95, 179
rhombic, rhomboidal, 14-16, 30
rod, 86
rounded, roundness, 88-91, 94, 97
visual chart for, 90-91
roundness and abrasion, 90
roundness index, 90
sample size for identification of, 98
shape/roundness matrix, 91
spherical, sphere 16-17, 21, 23-25, 86, 88-91,
94, 96-97, 104, 221, 284, 290, 291, 310
sphericity, 86-90. See Sphericity
sphericity-form diagram, 87, 97
variability at a site, 97
visual field identification, 97

Particle sieve-diameter, 17
Particle size, 14, 16-20, 24, 28, 32-33

analysis, 3, 21, 31-32
categories, 17
classes, 14, 16-28, 30, 32-34, 36-37
conversion between measurements, 28, 30
Draxs 289, 290, 327
dominant large, Dgom, 29, 289, 340, 371
fraction. See Size class
gradation, 18, 20
gradation curves. See Cumulative particle-size
frequency distribution
mean, 14, 17. See Mean particle size
measurements of, 20, 27-30, 323
in pebble counts, 164
operator error, 148, 164, 329
median, 17. See Median particle size
metric, in mm, 17
per sieve class, 24
ratios, 343
DSOsurface/ DSOwbs.Jrfaoe- 131- 191- 373- 379
D50armor / DSOsubarmor- 188

D505urface / Dbedl oad fines 373
Dsolocal / D50reach—avg.y 379
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Particle-size distribution, conversion between
sampling methods, 216-217
computed penetration depth, 226-229
modified cube model, 224-226
split plane surface model, 227-229
voidless cube model, 218-224, 227
Particle-size frequency distribution, 17-18, 38,
40-41, 43-48, 51, 56, 61-62, 64, 67, 80, 84
advantage of plotting, 158
analysis of, 39
bimodal, 82-83
computation of, 38, 370
example of, 39
in various stream types, 1
irregular, 46
obtained by different methods of sampling and
analysis, 216-217
symmetrical, 62
tail of fines, 42, 48
wide, 230
with different sorting coefficients, 69
Particle-size measurements. See M easurements
of particle size
Particle-size parameter. See Distribution
parameters
Particle dliding, 136
Particle specific gravity, 99
Particle specific weight, 99
Particle submerged specific weight, 100
Particle volume, 16, 34, 293
ellipsoid approximation, 178-179
estimation from particle shape, 98
measurement of, 98, 310
Particle weight, 31, 34
per size class, 36-37
weighing in the field, 34, 36, 370
Patch, patchiness, 108, 120, 126, 323, 330, 336,
345, 374, 375, 378-379
Pavement, 124, 130, 131
Peakedness. See Kurtosis
Pebble box, 16, 20, 28-30, 86
Pebble counts, 25, 38, 54, 123, 132, 145-165,
182, 184, 191, 230, 248, 250, 271, 276-278,
283, 323, 325, 328, 332-340, 340-345, 345-
358, 378
and fines, 149-153, 157
and volumetric sample, 191
adjustment with areal sample, 237-239
along transects, 108, 333, 334, 344
at measuring tape, 147, 151, 155, 158-159,
333,334
in meandering reach, 337-338
number of to cover the reach, 338-339, 343-
345, 352, 355
paced, 332-334
parallel, 333, 334, 341



spanning facies units, 352
tightly / widely spaced, 332, 333, 336-337,
341
area needed for, 354
bias against fines, 224, 229
data record for, 164-166, 329
definition of, 144, 146
combination with areal sample. See also
Hybrid sampling, 354-355
flexible, 233-236
rigid, 230-233
geomorphologically stratified sampling, 340-
345
grid spacing. See Grid spacing
heel-to-toe sampling. See Heel-to-toe sampling
inherent bias towards coarse particles, 156
in poorly accessible stream locations, 150,
151, 283, 332, 333, 336
in presence of bed surface-structures, 156
in small cobble-bed streams, 339
in submerged beds, 150
methodological differences, 148
of particles large and wedged, 13, 122, 123,
141, 155, 165, 333
on dry beds, 150
on exposed subsurface, 197-198
on facies units, 346-347
operator bias. See Operator bias
operator error. See Operator error
particle identification, 146-150, 332, 333
based on foot placement, 154
using sampling frame, 161
particle retrieval, extraction from bed, 122-
123, 133, 149-150, 161, 164, 333, 334,
336
error in 100- and 400-particle pebble counts,
149, 152, 157, 250, 266, 271, 276-277,
327-328, 334, 338, 347, 352. See also
Error (number-based computations)
sample size, 250. See also Sample size
(number-based) and Sample size - error
relation
sampling path, 151, 332
avoiding cobbles and boulders, 155
obstructed, 333
systematic, 333-336
unplanned, 333-334
sampling point spacing, 142, 145-148, 156,
159, 165, 168, 198, 327, 335, 338-339,
355. See also Grid spacing
sedimentary stratified sampling (within facies
units), 345-358
sources of errors, 148
spatial aspects of, 327
spatialy integrated sampling, 332-340

spatially segregated sampling, 340-358
statistical error 148-149, 152, 157, 162-164,
259, 271, 283
around small percentiles, 278
in heel-to-toe samples, 152
when using the sampling frame 162-164
subsamples, 341
time requirement, 145
unbiased, 157
within representative area of facies unit, 355
zigzag sampling, 278, 325, 332, 329, 333-336
Pebbles, 28, 32-33, 36
Penetration depth of adhesive. See Adhesive
penetration depth
Percent error, 242. See Error around mean,
median and percentiles.
Percentile error. See Error around percentiles
Percent finer, 38, 47, 74
Percent fines, 82-83, 108, 146, 148-149, 153,
278-279, 327
and error, 283
comparability of, 204
in McNeil samplers, 204
sample size for determining, 277-283
variability in pebble counts, 151, 153
Percentage frequency distribution, 38
Percentiles, 39-41, 48, 57-58, 62-63, 66-67
analytical computation of, 310-311
at points of curvature, 59
at tails of the distribution, 59
central, 61, 261
computation of, 40
example computation, 41
graphically determined, 39, 41
linear interpolation, 41
of normal distribution, 247
quartiles, 40, 60, 63, 76, 78
usage for, 146
Photographic analysis
areal overviews > 100 m?, 166, 182-184
close-ups < 0.1 m?, 182, 184
for small sampling areas, 146, 351
intermediate scale > 1 m?. See Photographic
grid counts and Photo sieving
under water, 181, 184
variety of spatial scales, 167, 184
Photographic areal sampling, definition of, 178.
See Photo sieving
Photographic grid counts, 166-170, 178
bias againgt fines, 170
deviation from sieve results, 169
problems of, 169-170
projection onto a screen with grid lines, 168
suitability of, 170
Photographs, 144-146, 167-168, 170, 178, 181-
182, 184
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for mapping bed surfaces, 142
of imbricated surfaces, 142
Photo sieving, 86, 171, 178-181, 184, 351, 354,
380
calibration, 181
comparison with mechanical sieving, 179, 181
field timevs. lab time, 181
flow chart for analysis, 179-180
for particle-shape analysis, 181
using divers, 181
Pilot study, 241, 246, 251, 252, 274, 288, 308,
325, 326, 360, 363, 365, 367, 373
Pipe dredge, 383. See also Dredge
Pipe samplers, 195, 203, 331, 367. See also
McNeil sasmplers, 203
Pivot angle, 93-97, 119
Plane-bed stream, 6, 8, 117, 122, 275, 325, 326,
334, 374
Planimetric particle-size measurements and
analysis, 166, 169. See also Photo sieving
Plotting particle-size distribution
advantage of, 158
Plywood shield, 210, 365, 367
to enclose the sampling area, 200, 209,
Pocket gravel, 141
Point bar, 111. See also Bar
Pool, pools, 107-109, 111, 113, 116-123, 325,
326, 334, 372
backwater pool, 126
bed-material sizein, 113, 326
caused by LWD, 116
dammed pool, 124
deposition of finesin, 119, 373, 380, 382-383
forced pool, 326, 334
location of, 111
plunge pools, 124, 127, 130
residual pool volume, 382
scour in, 117
scour pool, 124, 126-127, 130
various kinds of, 116
Pool-exit-slope, 117
Pool-riffle-bar triplet, 109, 116
Pool-riffle stream, 6, 8, 111, 120-122. See also
Riffle-pool
Population size
and sample size, 254-255, 270
limited, 242-243, 254-257, 269-270
unlimited, 255
Pores, 100, 131
Porosity, 104, 105, 106, 224
Polymodal 62, 83
Precision, 241-245, 247-248, 250, 261, 268, 275-
276, 284, 288, 323, 327, 328, 336, 338, 359,
360, 364, 368, 372, 376. See also Error
and accuracy, 245
definition of, 244-245

420

for al percentiles, 284, 287
for set of subsamples, 286, 288, 304
mean, for given sample size, 286-287
stringent criteria, 328
unduly high, 364

Probability, 43-44

Probability graph paper, 41, 43, 50, 57. See

Appendix

Probability plotting, 41
and regression analysis, 51
approximation of probability scale, 43
of residuals, 51
visual assessment, 43-44

Proportional sampling, 343-344

Q
Quantiles, 55
Quartiles, 40, 63, 76, 78

R
Random, randomness of
particle selection, 146
sample, 146, 151, 155-156
sampling locations, 324, 333, 360
within grid cells, 324, 360-363, 366, 372, 374
Randomization of locations for volumetric
samples, 324, 361, 362, 363
Randomized grid patterns, 331
Rapids. See Riffles
Reach, 107-108, 113-114, 116-117, 120-121,
127, 141-142. See also Sampling area
definition of, 325
delineation of. See Delineation
familiarization with, 326, 345, 346, 348
large, 351, 355, 374
length of, 325-326, 335,343-345
long, 323, 343-344, 355
size of, 338, 365
small, 332, 338-339, 340-341, 347, 374
Reach-averaged bed-material size, 114, 323, 325,
332, 334, 336, 338, 340, 342, 343, 348, 354,
356, 357-358, 359, 364, 366, 370, 371, 373,
376, 378
area-weighted, 347, 348, 351, 354, 356-358,
377-379
of subsurface sediment size, 364, 373, 377-379
Reach-spanning grid system, 351-353, 362-363,
374
Recording field results, 240. See also Field book,
—computations, —forms, and —notes
Regression analysis, 55, 305-306, 364
Replicate sampling, 307-310, 363, 368
Resampling procedure. See Replicate sampling
Residuals, 43, 51-54



Resin cores, 213
Rigid combination, 230-233
Riffle crest, 108-109, 113, 117, 325, 326, 382
Riffle-pool sequence, 9, 108-109, 111, 113, 118-
120, 122, 128, 323, 325, 338, 343, 344, 379
Riffle-pool morphology, 120-122, 325, 374
Riffle-pool stream, 275, 378
Riffles, 9, 107-109, 113, 116-121, 371
as sampling locations, 120, 342, 343, 371-372
bed-material sizeon, 114, 121, 326
coarser or finer than reach, 342, 371-372
flow hydraulics and cross-section, 342
glide, 117, 326, 343
location of, 111
pebble counts on, 342-343
rapids, 9, 116-117, 326, 334, 343
related features, 116
response to sediment supply, 340
runs, 116-117, 120, 122, 326, 334, 343
structural stability on, 118, 121, 343, 373
unrepresentativeness for the reach, 343, 372
volumetric sampling on, 371-372
Riffle spacing, 118
Riffle splitter, 32, 35. See also Sample splitting
Riffle Stability Index, 340
Riparian areas
damage to, 203
Riprap, 94
Rockfall, 97, 127, 131, 371
Rosin distribution, 48-51
Rotary scoop sampler US RBMH-80, 202-203
Round-hole sieves, 168
Roughness
form, 127
hydraulic, 133, 142
of bed, 135, 146, 289
Ruler, 16, 20, 25, 27-28, 30, 33, 36, 86, 164-166,
168-169, 178, 184, 329
Runs. See Riffles

S
Sample, 25, 27, 30-31
coarse portion, 32
computer generated, 288
large, 32
largest particle to be included, 123, 127
partitioning into gravel and sand fraction, 51
representative, 74
unsieved portion, 33
with coarse particles, 34
Sample combination
adjustment of frequency distributions, 230,
237-238
flexible, 230, 233-236
rigid, 230-233

Sample conversion
computed penetration depth, 226-229
split plane surface model, 227-229
modified cube model, 224-226
voidless cube model, 217-224, 227
Sample mass (volumetric samples), 32-33, 191,
195-197, 200, 213, 363, 368, 371
effect of large particles, 291, 298
effect of sampling scheme on, 359, 360
for grab samples, 366-368, 373
for identifying particle shapes, 97
for measuring embeddedness, 141
for riffle samples, 372
for subsamples, 363, 365, 373
for bias avoidance in, 304, 365, 368-370,
372,373, 376
grab samples, 366-368
reduction of, 366, 376
for total sample, 199, 331, 332, 359, 363, 365,
366, 368, 369-370, 373, 376
comparison between computations, 369
ecological criteria, 363, 365, 370, 372
for homogeneous reach, 360
in poorly sorted, coarse stream, 360, 365
large, unfeasible, 359, 370, 372
manageability of, 370, 376,
reduction of, 299-301, 365, 366, 370, 373
sedimentary stratified vs. integrated
sampling, 375-377
from barrel samples, 206, 208
from freeze core, 211
from hybrid sampler, 215
from McNeil samplers, 204
from plywood shield, 210
from tri-tube samples, 212
in coarse, poorly sorted mountain stream, 319,
331, 360, 365
Sample mass equations
analytical, 365
based on normal distribution, 308-320
for specified percentile error, 315-320
empirical, 288, 289-298, 299, 365
0.1, 1, 5, and 10% criteria (constant CV),
293-294, 315, 320, 360, 365, 366
American, 296
as function of Dy, 196, 289-299
based on error due to largest particle, 291
based on sample volume, 294-295
Canadian, 297
field criterion (5 Doy particles), 295
for low, normal, and high precision, 293
German (DVWK), 297
Swiss, 297
Sample mass - error relation, 288, 301, 311, 316,
331, 360. See also Error curves, 376
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and assumed distribution type, 288-289, 293,
304, 309
and standard deviation, 316-320, 372
and study objective, 372
bootstrap approach, 315-320
for bias avoidance, 311-314, 331, 369, 370,
372-373, 376
for error around mean, 309
for error around median, 309, 376
for percentile error, 372
absolute, 305-309, 318-320, 320-322, 365
central percentiles, 301-304
estimation from regression function, 304-
306
percent, 305, 307, 320-322
standard error, 315-320, 365
Sample depth in volumetric samples, 192-194,
197
thickness of strata, 132
Sample size (for areal samples), 242, 283
geometrical consideration, 284
multinomial approach, 287
two stage sampling, 285-287,

Sample size (number based), 241-243, 245, 247-
249, 253, 255-256, 271, 275-276, 278, 282,
347

and confidence levels, 248

and cost and benefits of field work, 241

and error. See Error (number-based
computation)

computation in the field, 260, 263

computation of, 249, 283

effect of limited population size, 243, 254-256

effect of multiple operators, 259

effect of preset acceptable error, 259

effect of sorting, 258

effects of bed-material characteristics, 241,
258-259

effects of spatial variability, 328

estimating from pilot study, 326

factors affecting, 242

for characterizing a population, 275

for detecting change in percent fines, 278-283

for low percentiles, 277, 328

geometric approximation, 287

in skewed distributions, 276

of subsamples, 262

Sample-size computation, iteratively, 250-251,
262, 285-286, 303

Sample-size equations (number-based), 245, 261,
272,276

comparison of, 256-257

for areal samples, 283-284

for error around mean, 249-258
absolute 249-252
limited population size, 254-256
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percent, 252-254
for error around median, 261-263, 272, 285.
See also Two-stage approach
for error around percentiles, 261, 264-275,
284. See also Binomial, Multinomial, and
Bootstrap approach
absolute, 271
central percentiles, 261-263,
percent, 264-268
not applicable for heterogeneous reach, 341
Sample size — error relation, 242-243, 247, 250,
256, 258, 269, 275, 327, 341
and assumed underlying distribution type, 242-
243, 249, 264-265, 268, 271-274
and sorting (standard deviation), 276
around any percentile, 285
around mean and median, 276
binomial approach, 265-266
computation in the field, 260
for heterogenous reaches, 341
from bootstrap approach, 270, 274
Sample-size statistics, 243, 277. See also Error
and Precision
Sample splitting, 31-35
inthefield, 33, 370
Sample storage 31
Sample volume, 32-33, 195-197
fixed and small, 199
manageable, 323
relative, 310-320
Sampling area, 347, 348. See also Reach
disturbance by sampling, 158, 299, 323, 331,
365
for areal samples, 197, 283-286
for pebble counts, 145, 328
for volumetric samples, 195, 198
large, 355, 363, 364. See also Streams, large
small, 242, 249, 323, 332, 338, 342, 354
Sampling bed material, 141
challenge of, 3
coarsest clasts only, 371
finest only, in pools, 372, 380, 382-383
in entire reach, 150
in fast and deep flow, 13
in gravel- and cobble-bed streams, 2, 4
in heterogeneous reach. See Sampling patterns
in homogeneous reach. See Sampling patterns
in mountain streams, 4, 370. See Mountain
streams
in plane-bed streams, 122
in presence of bed-surface structures, 133, 142
in presence of structural features, 119
in reaches with much LWD, 126, 127, 345
in step-pool streams, 123
in turbid water, 13
in various stream types, 2



in vertically stratified sediment, 132
invicinity of boulders, 127
locations of. See Sampling locations
methodological differences, 4
non-destructive, 143, 170, 171, 184
on bar heads, 371, 380-381
on bars, 114
onriffles only, 120, 342, 372
purpose of, 2
to demonstrate downstream fining, 108
with no replications, 304
with replications, 307-310, 363, 368
Sampling bias, 243, 245
Sampling effort, 336, 341, 359, 360, 364, 370
Sampling equipment and procedures
and coarseness of the bed, 331
combination of, 351, 354. See also Hybrid
sampling
effect of natural and man-made factors, 143
for volumetric samples, 195, 198-216, 367
Sampling errors. See Error(s) and Precision
Sampling frame, 153, 158-166, 198, 259, 276,
283
comparison with heel-to-toe samples, 161
construction of, 158
operator error, 162
reduction of operator error, 161, 163-164
usage of, 159
Sampling grid. See Grid sampling
Sampling locations, 108, 114, 331, 366, 368. See
also Sedimentary and Geomorphological
units, and Pebble counts
accessihility, 332
at locations representative of reach-avg. Dsg or
DSO sub
at representative locations within each or
almost every facies unit, 351, 355, 374,
375
effect of heterogeneity and sorting, 370
extending over bankfull width, 338
for stream competence analysis, 380
for reach-avg. subsurface sediment and Dsogyp,
374,377,379
inaccessible, 13, 151, 336, 283
indicative of fine sediment, 380
in high- or low-flow bed, 120, 151, 166, 338.
See also Stream width
number of, 331-332. See Number of
volumetric samples
patterns of. See Sampling patterns
representative selection of, 2, 355, 359, 374,
375, 377-379
retroactive computation of, 370
where local Ds, Oreach-averaged Dsg, 374
within grid cells, 324, 362, 363, 372, 374

Sampling method
selection of, 3, 4, 145
"standard”, 4
suitability, 145
Sampling patterns. See also Sampling locations
in heterogeneous reach, 242-243, 245, 304,
323, 325-326, 328, 332-333, 336, 340-
341, 347, 373, 377. See also Sedimentary
segregated and Geomorphologically
segregated sampling
in homogeneous reach, 241, 254, 261, 275,
284, 304, 323, 325-326, 328, 330, 332-
334, 341, 344-345, 359, 360, 373. See
also Sedimentary integrated and Geo-
morphologically integrated sampling
overlapping, shifted grids, 324, 336, 341-342,
360, 363
random, 324, 333, 360-361
randomization of, 331, 362
random locations within cells, 324, 360-363,
366, 372, 374
spatially focused sampling. See Spatialy
focused sampling
systematic grid, 324, 333, 334, 336, 338, 341,
348-349, 351, 366, 372, 374
facies-spanning, 351, 353
pebble count combined with areal sampling
(hybrid sampling), 351, 354, 355
reach-spanning, 351, 352, 360, 362-363,
374
Sampling patterns for pebble counts. See pebble
counts
Sampling pit, 189, 191, 195, 197-198, 208
Sampling point spacing. See Pebble counts and
Grid spacing
Sampling protocoal, 151
Sampling reach. See Reach
Sampling results,
comparability of, 145
effects of sampling schemes, 323
Sampling schemes, 323, 324, 335, 345, 374. See
also Sampling patterns
and degree of spatia variability, 333, 360
and sample mass, effort and precision, 359,
360
based on surface facies, 331
errorsin, 148
for subsurface sediment, 331
for volumetric samples, 331
geomorphologically stratified (segregated)
pebble counts, 340-345
volumetric samples, 371-373
overview, 324
sedimentary integrated, 333, 336, 345
sedimentary stratified (segregated), 373-379
pebble counts, 336, 345-358
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sampling patterns for, 351-355, 374-377.
See Sampling patterns
volumetric samples, 373-379
selection of, 3, 332, 333, 336, 358-359
spatially focused, 323, 379
spatialy integrated, 323, 324, 331, 336, 358-
371
pebble counts, 332-340
volumetric samples, 358-371
spatially segregated, 245, 323-325, 331, 336-
338, 371-379
pebble counts, 340-358
volumetric samples, 358-359, 371-379
unsuitable, 333
Sampling suspendable bed material, 203-204,
208
Sand, 17-21, 24, 30-33, 36, 132, 134, 336, 362,
375
Sand-bed streams, 1, 2
Scour, 107, 116-118, 121, 123-124, 126-128,
130, 141, 326
around boulders or LWD, 127
around bridge piers, 138
in horse-shoe vortex, 127, 138-139, 124
inpooals, 117, 124
of fines, 124, 128, 130
onriffle, 118-119
Sedimentary stratified (segregated) sampling. See
Sampling schemes
Sedimentary (facies) units, 126, 145, 185-186,
303, 323, 324, 326, 328-330, 332, 345, 348,
352, 359, 371, 372, 374
definition of, 330, 345
delineation of. See Delineation
familiarization with, 348
few per reach, 374, 378
identification of, 127
large, 355-356, 373, 375, 378
many small ones, 359
map of, 346, 347, 378
multiple occurrences of, 374-375
particle-size distribution on, 378
representative sampling of, 332
size of, 331, 345, 347, 559
small, and fine sediment, 347, 360-361
sorting on, 355, 373
visually distinguishable, 378
Sediment entrainment
delay of, 118
Sediment strata (layers), 132, 189, 329
Sediment stratigraphy, 211
Sediment supply, 107, 112, 116, 122, 128, 131
and transport capacity, 119
cut off from, 124, 130
effect on bed-material size, 114
from debris flow, 12, 97
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from fluvial sourcesonly, 12
from non-fluvial sources, 12, 108
fromrockfall, 97, 127
from rock source, 51
from tributary, 107
high, 133, 135, 188, 336, 373
of coarse sediment, 135
of sand and silt, 119
low, 111, 114, 124, 136, 336, 355, 379
of fine sediment, 151, 191, 372, 386
of non-transportable large clasts, 108, 289
Sediment transport analysis, 188, 373
Sediment volume, 106
Seria correlation, 123, 142, 147-148, 156, 166,
168, 327, 335, 338, 341
Settling velocity
effect of particle shape, 89
Shear stress, 117
excess, 124
reversal of, 118
zones of highest, 113
Shovels, 195, 198-199, 204
Shovel samples
comparison with McNeil sampler, 200-201
on dry beds, 195
under water, 199
Sieve, 14, 16-17, 20-25, 27, 30-31, 33
analysis. See Sieving.
box, 33-34
class, 16-17, 21, 24-25, 28, 33-34, 36
curve. See Cumulative particle-size frequency
distribution curve
diameter, 17, 25, 33
round-hole sieve, 20, 23-25, 28
set, 16, 25, 32-33
size, passing, 17, 23-25, 27, 31, 49
size, retaining, 17, 23-24, 36, 37, 49
square-hole sieve, 20-25, 28, 30, 37
Sieving, 20-27, 30-35
contents of the pan, 43
inthefield, 32-34
inthe lab, 30
manually, 30
ROTAP, 30
subsamples, 30-33
jointly, 343, 361, 366, 367, 370
Significance level, 54-55
Silt, 18, 132
Single-thread streams, 122
Single-tube freeze-cores, 199, 213
Single-tube freeze-core sampler, 210-211
Sinuosity, 7
Sketch map of reach, 326, 341, 348
Skewness, 38, 41-42, 56-58, 61, 75, 149
and departure from normality, 73
and sample size, 263, 272-275



classification of, 75
comparison between methods, 82
computation of, 74
definition of, 73
graphic arithmetic, 74, 78
graphic geometric (Fredle index), 76
in mountain gravel-bed rivers, 73
in Rosin distribution, 48
moment method (third moment), 77-78
negative, 73-74
numerical values of, 75
positive, 73-74
quartile, 76
range of percentiles used, 74-75
sengitivity of datarange, 74
towards tail of fines, 128, 270-272, 276-277,
307, 320-322, 327, 328
Sorting, 38, 41-42, 46-47, 56-58, 61, 73-74, 96,
149, 157, 162, 185, 242-243, 246, 257-260,
271, 310, 333, 364, 373
and standard deviation, 67
chart for visual estimation, 67-68
classification of, 68
coefficient. See Sorting
comparison between methods, 80, 82
for Rosin distribution, 49
gradation coefficient, 70-71
graphic arithmetic, 67, 73
graphic geometric, 69-72
in skewed distributions, 67
longitudinal, 123, 136
moderately-well sorted gravel bed, 149
moment method (second moment), 71-73
number of percentiles used, 67
of different facies, 126
poorly sorted gravel, 147, 149, 214, 244-245,
250, 253, 258, 276, 291, 311, 314, 315,
327, 333, 334, 346, 365, 370
valuesin gravel-bed rivers, 638
well sorted sediment, 134, 188, 241, 252, 332,
365
Spacing between sampling points or grid points.
See Pebble counts and Grid spacing
Spatially focused sampling, 323, 377, 379
in pooals, 372, 380, 382-383
on afew (representative) locations only, 375,
377
on bar heads, 371, 380-381
Spatial sampling schemes. See Sampling schemes
Spatial scale of sampling project, 323, 325
Spatial variability of bed-material size, 114, 171,
326, 329, 332-334, 340, 341
and LWD, 126
and sampling patterns, 332
complex, 332

covered by sampling, 332, 367
degree of, 326, 330, 333, 345, 359, 363
downbar fining, 108, 114, 323, 326
downstream fining, 107
ignored, 340
inferences of, 330, 359
insight in, 340
landward fining, 108, 114, 122, 323, 326
lateral, 108, 122, 334, 378, 379
longitudinal, 334, 378, 379
moderate, 332, 344
no information on, 334, 370
none, 326, 345
of fines, 60
of subsurface sediment, 330-331, 372
on bars. See Downbar and Landward fining,
and Bar heads
on geomorphological unit, 107, 114-115, 120
onriffles, 108, 120, 342, 372
patchy, patchiness, 108, 120, 126, 323, 330,
336, 345, 374, 375, 378-379
patterns of, 107
pronounced, 336
within reach, 108, 120, 363
within sedimentary (facies) units, 331
Spawning
gravel, 178, 198, 203. See also Aquatic habitat
success and fines, 82
Sphericity, 86-90
and fluvial transport distance, 88-90
effective settling, 89-90
effect of geological parent material, 88-89
effect of sediment source, 97
effect on suspensibility, 90
effect on transportability, 88-90, 92
sphericity-form diagram, 87, 97
Split plane surface model, 227-229
Splitting apparatus, 34. See also Sample splitting
Spreadsheet, 19, 31, 38, 41, 43-44, 57, 61, 260,
261, 263
Square-hole sieves, 164, 168, 179
Standard descriptive statistical parameters, 42
Standard deviation, 38, 40-41, 46, 55-56, 59, 66-
67, 69, 72-73, 80, 82, 242-243, 245-246,
248, 252, 257, 259-261, 268, 270-271, 285-
286, 327
between or of subsamples, 262, 263, 302, 364
comparison between original and log-trans-
formed data, 72
computation of, 66
definition of, 66
graphic geometric, 253
logarithmic geometric, 250, 251
of population, 245
Standard error, 242, 247, 268-275, 316. See also
Error around percentiles
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Standing waves, 134
Statistical bias, 243, 245
Statistical error. See Pebble counts
Step-pool stream, 6, 8, 9, 123-124, 325, 326
Stilling well. See also Plywood shield
to enclose sampling area, 200
to prevent loss of finesin shoveled samples,
199
Stone cells, 136
Stoss deposit, 137-138
Straight streams, 108-110, 113, 115
Streambed
disturbance by sampling, 158, 299, 323, 331,
365, 376
heterogeneity. See Heterogeneity of bed
material
homogeneity. See Homogeneity of bed
material
monitoring. See Monitoring
Stream blockage, 124, 126. See also log jams
effect on stream morphology, 124
Stream classifications, 6
applicability of, 9
based on median particle size, 1, 7
difference between Rosgen and Montgomery-
Buffington, 9
educational aspect of, 6
Montgomery and Buffington (1993, 1977,
1998), 6-8, 11
Rosgen (1994, 1996), 1, 6-7, 9-11
Stream competence, 107, 118, 130, 141, 380-381
Stream gradient, 1, 7, 107, 112, 116-118, 122
local, 117, 343
steep, 1, 133-134, 343
in Montgomery-Buffington and Rosgen
classification, 11
Stream morphology, 1, 6, 9, 108, 116, 122-124,
323, 325, 338
and spatial variability of bed-material size, 114
around bouldersand LWD, 116, 124
of riffles, pools, and bars
studies, 146
units, 108, 116
Stream morphometry, 7, 9
Streams
aggrading, 120, 122, 191, 229, 340, 345, 373,
378
degrading, 120, 122, 124, 340, 373
large, 326, 355, 364, 370, 375
Stream type, 325, 341
anastomosing, 9
A-type streams, 4, 9, 122, 123, 325, 326
boulder-bed, 1
B-type streams, 4, 9, 122, 325, 326, 333, 334,
374
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braided (D-type), 9, 109-110, 112-115, 131,
375
cascades, 9, 116-117
classification by Montgomery and Buffington,
(1993, 1997, 1998), 6-8, 11, 325
classification by Rosgen (1994, 1996), 1, 6-7,
9-11, 325
C-type streams, 4, 9, 111, 120-122, 325, 326,
333, 345, 374
common in Pacific Northwest, 9
coupled stream, 12
distinction by sediment source, 12
gravel- and cobble-bed, 1, 2
gullies, 9
meandering, 109-111, 113, 115
mountain streams, 12. See Mountain streams
plane-bed, 6, 8, 117, 122, 275, 325, 326, 334
pool-riffle, 6, 8, 111, 120-122. See also Riffle-
pool
relict/non-fluvial, 12
sand-bed, 1, 2
self-formed, 12
single-thread streams, 112
step-pooal, 6, 8, 9, 123-124
straight, 108-110, 113, 115
uncoupled stream, 12
wadable and unwadable, 13
Stream width, 117-118, 151, 161, 185, 325, 336,
338
Student’st, 247-248, 251, 257-258, 286, 302,
350
Study methods, 2, 4
selection of, 3-4
Study objective, 2-4, 120, 150, 371, 372, 374
Subarmor sediment, 188, 199, 201, 330, 359,
373. See also Subsurface sediment
definition of, 191
diagram, 143
sample depth, 192
sampling of, 191, 210
Subsamples, 261, 286
areafor, 348
area represented by, 361
combination of several, 199
difference between, 363
grab samples. See Grab samples
joint analysis of, 361, 366
for armor layer sampling, 330
for sieving, 30-33
mass for bias avoidance, 304, 365, 368, 369,
370, 372, 373, 376
reduction of mass, 366, 376
number of, 248, 261-263, 284-285, 288, 301-
305, 364, 370, 372, 373, 376
Subsurface particles, hand-picking, 197



Subsurface sediment, 128, 130-131, 188, 199,
359, 364, 371-373, 383
and bedload particle size, 373
definition of, 191
diagram, 143
example particle-size distribution, 39
in facies units, 331, 379
fining of, 128, 130
reach-averaged Ds Size, 364, 373, 377-379
relation to surface sediment size, 330, 359
sample depth, 192
sampling of, 191, 377-379
size, controlled by, 191
Summary statistics, in normal distribution, 51
Surface coarsening, 128, 130-131, 191
Surface fines, 277
sampling of, 278
veneer of, 191
Surface fining, 132
Surface particles, 128-129
distinction from subsurface particles, 172
marking with spray paint, 172
problem of identification, 144
removal of, 197
Surface sampling. See also Pebble counts and
Areal sampling
definition of, 144
differences between methods, 145
in small sampling areas, 146
Surface sediment, 188, 199, 330
definition of, 144
diagram, 143
relation to subsurface sediment size, 330, 359
removal of, 191
Surveying sedimentary units, 346, 359, 378
Suspended sediment concentration, 132
Systematic sampling along measuring tape, 147,
151, 155, 158-159

T
Tape recorder, voice activated, 164
Tarps, 32-34
Template, for gravel measurements, 16, 20, 25-
28, 30, 32-33, 148, 161, 164-165, 328
Ternary (triaxial diagram), 186-187, 347
Textural map, 346-348, 378
Thalweg, 108, 113-114, 120-121
stream length, 335-336
Thin-section analysis
for areal resin samples, 173, 176
for resin cores, 213
Total error (statistical and operator), 152, 162,
271, 277
Traction carpets, 136-137
Transportability, 90

Transport capacity, 107, 113, 119, 122, 131
Transport competence, 107, 118, 130, 141, 380-
381
Transport controlled (limited), 51, 340, 343, 373,
383
Transport distance, 16, 24, 51, 88-89
Transverse clast dams, 133-134
Transverseribs, 117, 134-135, 327, 362
Triaxia (triangular) diagram (ternary), 186-187,
347
Tri-tube freeze-core sampler, 212-213
Truncation of sample, 61
and comparison of samples, 61
and surface fines, 82
at coarse end, 60, 82, 204, 366-367, 373
and readjustment, 299-300
at fine end, 60, 80, 153
effect on distribution curve, 60
effect on Fredle index, 77
effect on moment method, 61
effect on second moment, 80
effects on sorting, 46
effects on summary statistics, 61
of distribution tails, 45
Turbulence, 118
Two-stage sampling approach, 149, 171, 261,
263, 275, 284-286, 288, 301-307, 309, 328,
331, 341, 360, 361, 363, 367-368, 372
and @-units, 263, 287, 301
computerized, 304-307
for heterogeneous reaches, 336
with resampling, 307, 309

U
Underlying distribution type, 242-243, 271-274
assumption of (normal distribution), 45, 249,
264-265, 288-289, 309, 311, 318, 328,
360, 365, 368, 369, 373, 376
no assumption, 264-265, 268, 288, 293, 304,
360, 365, 368
Underwater storage box for shoveled samples,
199
Unimodal, 62, 83-84, 243
Unstratified bulk sediment, 188, 336, 359, 371-
373
Untransportable objects or clasts, 117, 127, 131,
289

\%
V* 380, 382-383
Vehicle access, 32-33
Velocity reversal, 118
Visual chart for
degree of sorting, 67-68
particle roundness, 90
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particle size-categories (ternary), 93
shape/roundness matrix, 91
Visual delineation of sedimentary (facies) units,
185, 329, 345-348
Visual estimates
of bed-surface parameters, 327
of particle sizes, 142, 184-185, 345-348
Visua field identification of particle shape, 97
Visual image of bed stratigraphy, 213
Visualization of sampling process, 240
Voidless cube model, 218-224, 227
Void ratio, 100, 105-106
Voids, 128, 132, 227, 287
filled with fines, 130
neglecting presence of, 227
Void volume, 106
Volume-by-number, 219

Volume-by-weight, 171, 197, 217, 219, 221, 223-

230
Volumetric samples, 132, 323, 325, 329, 359
areal extent of, 365
at random locations within systematic grid
cells, 360
at several overlaying grid systems, 360
at systematic grid points, 360
definition of, 188
depth of, 192-194, 197
grab samples, 366
in dry beds, 195
of subsurface, 277
Volumetric sampling, 288-320, 325, 329, 380
armor layer, 330. See Armor layer

equipment and procedures, 195, 198-216, 367

geometrical and ecological criteria, 363

geomorphologically stratified, 371-373

in homogeneous reaches, 359-360

in large streams, 364

in mountain streams, 370

number of samples or sampling points, 359,

363, 364, 366, 368, 370-373, 376

reduction of, 366
retroactive computation of, 370

number of subsample replications, 363, 372

on riffles, 372

problems of, 199

sample mass. See sample mass

sedimentary stratified, 373-379

spatial aspects of, 329

spatially integrated, 358-371

spatially segregated, 371-379

under water, 198-199, 202, 207

W
Wading, wadable, wadability, 13, 25, 146, 147,

151, 181, 202, 203, 207, 215, 332, 333, 334
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Wake deposit, 137-139, 142, 156, 340, 380

Weight-based frequency. See Fregquency-by-
weight

Weight per size class, 38

Wentworth scale, 17-18

Wet-sieving, 173, 177

Width-depth ratio, 7

Z
Zigzag paths for pebble counts. See Pebble
counts



X
Federal Recycling Program ,.’ Printed on Recycled Paper



RMRS

ROCKY MOUNTAIN RESEARCH STATION

The Rocky Mountain Research Station develops scientific informa-
tion and technology to improve management, protection, and use of
the forests and rangelands. Research is designed to meet the needs
of National Forest managers, Federal and State agencies, public and
private organizations, academic institutions, industry, and individuals.

Studies accelerate solutions to problems involving ecosystems,
range, forests, water, recreation, fire, resource inventory, land recla-
mation, community sustainability, forest engineering technology,
multiple use economics, wildlife and fish habitat, and forest insects
and diseases. Studies are conducted cooperatively, and applications
may be found worldwide.

Research Locations

Flagstaff, Arizona Reno, Nevada

Fort Collins, Colorado* Albuquerque, New Mexico
Boise, Idaho Rapid City, South Dakota
Moscow, Idaho Logan, Utah

Bozeman, Montana Ogden, Utah

Missoula, Montana Provo, Utah

Lincoln, Nebraska Laramie, Wyoming

*Station Headquarters, Natural Resources Research Center,
2150 Centre Avenue, Building A, Fort Collins, CO 80526

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, sex, religion,
age, disability, political beliefs, sexual orientation, or marital or family status. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice
and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights,
Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington,
DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal
opportunity provider and employer.
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